Genetic Variability, Heritability, Genetic Advance, Correlation, and Path-Coefficient Analysis for Yield Attributing Traits in Chia (Salvia hispanica L.)
DOI:
https://doi.org/10.29244/jtcs.12.03.647-662Keywords:
chia, genetic parameters, principal component analysis, yieldAbstract
Chia (Salvia hispanica L.) is a promising multifunctional crop renowned for its numerous health benefits. It is essential to comprehend the genetic variability of chia and how various variables impact seed yield to increase its genetic improvement under the agro climatic conditions of Bangladesh. A field experiment was conducted using eight chia genotypes to assess genetic diversity, heritability, and genetic advance (GA), as well as the correlation coefficients for eight factors and their level of association with yield. Analysis of variance results showed significant variation for all the traits, i.e., the number of branches per plant, the number of inflorescences per plant, the length of the main inflorescence, the number of seeds per floret, and seed yield per plant, which differed significantly from one another. GPBC 1, BAU Chia 2, BAU Chia 1, and GPBC 3 were found to be promising genotypes for yield-attributing traits. Higher genotypic and phenotypic coefficient of variation was observed for seed yield per plant and the number of inflorescences per plant. High heritability coupled with high GA% was recorded for the number of inflorescences per plant and seed yield per plant. Seed yield per plant was positively correlated with the number of inflorescences per plant, the length of the main inflorescence, and plant height, while being negatively correlated with days to first flowering and days to maturity. Plant height and the number of inflorescences per plant had the highest direct positive effect on seed yield per plant as revealed through path analysis. The first four principal components contributed 84% of the total variation. The results of the current research may help choose better genotypes and traits for chia breeding initiatives to increase yield.
References
Ali, N.A., Elsayed, G.H., Mohamed, S.H., Elkarim, A.S.A., Aly, M.S., Elgamal, A.M., Elsayed, W.M., and El-Newary, S.A. (2024). Chia seed (Salvia hispanica) attenuates chemically induced lung carcinomas in rats through suppression of proliferation and angiogenesis. Pharmaceuticals 17, 1129. DOI: https://doi.org/10.3390/ph17091129.
Al-Khamisi, S.A., Nadaf, S.K., Al-Jabri, N.M., Al Hashmi, K.S., Al-Shirawi, A.I., Khan, R.R., Al-Sulaimi, H.A., and Al-Azri, M.S. (2021). Productivity of quinoa (Chenopodium quinoa L.) genotypes across different agro-ecological regions of Oman. The Open Agriculture Journal 15, 98–109. DOI: https://doi.org/10.2174/1874-331502115010098.
Al-Naggar, A., El-Salam, R., Badran, A., and El-Moghazi, M. (2017). Heritability and interrelationships for agronomic, physiological and yield traits of quinoa (Chinopodium quinoa Willd.) under elevated water stress. Archives of Current Research International 10, 1–15. DOI: https://doi.org/10.9734/ACRI/2017/37215.
Amer, H.M., Mohammad, A.A., El-Gohary, A.E., Hussein, M.S., and Amer, A. (2025). Insight into some oilseed crops’ productivity evaluation under different agroclimatic locations in Egypt. Discover Food 5, 108. DOI: https://doi.org/10.1007/s44187-025-00394-7.
Anwar, D., Eid, H., Rashad, S., and Soliman, S.A. (2024). Nutritional, physical, and microbiological properties of gluten-free bread with chia seed flour as an alternative thickening agent. Food Technology Research Journal 4, 92–106. DOI: https://doi.org/10.21608/ftrj.2024.290193.1072.
Ayerza, R. (1995). Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in Argentina. Journal of the American Oil Chemists’ Society 72, 1079–1081. DOI: https://doi.org/10.1007/BF02660727.
Ayerza, R., and Coates, W. (2005). “Chia: Rediscovering a Forgotten Crop of the Aztecs.” University of Arizona Press, Tucson, USA.
Azad, R., Alam, Z., Hossain, A., and Khokon, A.R. (2017). Effect of biofungicide on the production of healthy and quality seeds of Salvia hispanica in Bangladesh. Bangladesh Phytopathological Society 33, 57-64.
Azam, M.G., Sarker, U., and Banik, B.R. (2014). Genetic variability of yield and its contributing characters on CIMMYT maize inbreds under drought stress. Bangladesh Journal of Agricultural Research 39, 419–426. DOI: https://doi.org/10.3329/bjar.v39i3.21985.
Azam, M.G., Hossain, M.A., Sarker, U., Alam, A.M., Nair, R.M., Roychowdhury, R., Ercisli, S., and Golokhvast, K.S. (2023). Genetic analyses of mungbean [Vigna radiata (L.) Wilczek] breeding traits for selecting superior genotype (s) using multivariate and multi-traits indexing approaches. Plants 12, 1984. DOI: https://doi.org/10.3390/plants12101984.
Bhargava, A., Shukla, S., and Ohri, D. (2007). Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Research 101, 104–116. DOI: https://doi.org/10.1016/j.fcr.2006.10.001.
Cahill, J.P., and Ehdaie, B. (2005). Variation and heritability of seed mass in chia (Salvia hispanica L.). Genetic Resources and Crop Evolution 52, 201–207. DOI: https://doi.org/10.1007/s10722-003-5122-9.
Chaudhary, F.S., and Singh, R. (1985). An evaluation of response models. Sankhyā: The Indian Journal of Statistics, Series B 47, 280-289.
Cicero-Sarmiento, C.G., Sánchez-Salgado, J.C., Araujo-León, J.A., Hernández-Núñez, E., Campos, M.R.S., and Ortiz-Andrade, R.R. (2023). Clinical benefits of Salvia hispanica L. on cardiovascular risk factors: a systematic review and meta-analysis. Food Reviews International 40, 1457–1479. DOI: https://doi.org/10.1080/87559129.2023.2221333.
Comstock, R.E., and Robinson, H.F. (1952). Estimation of average dominance of genes. In “Heterosis: A Record of Research Directed Toward Explaining and Utilizing the Vigor of Hybrids” (W. John, and Gowen, eds.), pp 493-516. Iowa State College Press.
del Moral, L.F.G., Rharrabti, Y., Villegas, D., and Royo, C. (2003). Evaluation of grain yield and its components in durum wheat under Mediterranean conditions: An ontogenic approach. Agronomy Journal 95, 266-274. DOI: https://doi.org/10.2134/agronj2003.2660.
Deshmukh, S.N., Basu, M.S., and Reddy, P.S. (1986). Genetic variability, character association, and path coefficients of quantitative traits in Virginia bunch varieties of groundnut. Indian Journal of Agricultural Sciences 56, 816–821.
Dewey, D.R., and Lu, K. (1959). A correlation and path coefficient analysis of components of crested wheatgrass seed production. Agronomy Journal 51, 515–518. DOI: https://doi.org/10.2134/agronj1959.00021962005100090-002x.
Fghire, R., Anaya, F., Lamnai, K., and Faghire, M. (2022). Alternative crops as a solution to food security under climate changes. In “Nutrition and Human Health” (H. Chatoui, M. Merzouki, H. Moummou, M. Tilaoui, N. Saadaoui, and A. Brhich, eds.), pp 87–98. Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-93971-7_7.
Grancieri, M., Martino, H.S.D., and Gonzalez de Mejia, E. (2019). Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: A review. Comprehensive Reviews in Food Science and Food Safety 18, 480-499. DOI: https://doi.org/10.1111/1541-4337.12423.
Gravé, G., Mouloungui, Z., Poujaud, F., Cerny, M., Pauthe, C., Ibinga, S.K.K., Nikiema, D., and Merah, O. (2019). Accumulation during fruit development of components of interest in seed of Chia (Salvia hispanica L.) cultivar Oruro released in France. OCL Oilseeds and Fat Crops and Lipids 26, 50. DOI: https://doi.org/10.1051/ocl/2019037.
Grimes, S.J., Capezzone, F., Nkebiwe, P.M., and Graeff-Hönninger, S. (2020). Characterization and evaluation of Salvia hispanica L. and Salvia columbariae Benth. varieties for their cultivation in southwestern Germany. Agronomy 10, 2012. DOI: https://doi.org/10.3390/agronomy10122012.
Harisha, C.B., Boraiah, K.M., Basavaraj, P.S, Halli, H.M., Singh, R.N., Rane, J., Reddy, K.S., Halagundegowda, G.R., Chaudhary, A., Verma, A.K., Ravi, Y., Asangi, H., and Senthamil, E. (2025). Optimizing sowing time and weather conditions for enhanced growth and seed yield of chia (Salvia hispanica L.) in semi-arid regions. PeerJ 13, e19210. DOI: https://doi.org/10.7717/peerj.19210.
Hassani, M., Piechota, T., and Atamian, H.S. (2022). Prediction of cultivation areas for the commercial and an early flowering wild accession of Salvia hispanica L. in the United States. Agronomy, 12, 1651. DOI: https://doi.org/10.3390/agronomy12071651.
Hill, W.G. (1978). Biometrical methods in quantitative genetic analysis. Biometrics 34, 723. DOI: https://doi.org/10.2307/2530404.
Ho, H., Lee, A.S., Jovanovski, E., Jenkins, A.L., Desouza, R., and Vuksan, V. (2013). Effect of whole and ground Salba seeds (Salvia hispanica L.) on postprandial glycemia in healthy volunteers: A randomized controlled, dose-response trial. European journal of clinical nutrition 67, 786-788. DOI: https://doi.org/10.1038/ejcn.2013.103.
Huang, X., and Zhao, J.V. (2022). Omega-6 fatty acids. In “Biomarkers in Disease: Methods, Discoveries and Applications” (V.B. Patel, and V.R. Preedy, eds.), pp. 389–401. DOI: https://doi.org/10.1007/978-3-031-07389-2_25.
Islam, M.A., Raffi, S.A., Hossain, M.A., and Hasan, A.K. (2015). Analysis of genetic variability, heritability and genetic advance for yield and yield associated traits in some promising advanced lines of rice. Progressive Agriculture 26, 26-31. DOI: https://doi.org/10.3329/pa.v26i1.24511.
Johnson, H.W., Robinson, H.F., and Comstock, R.E. (1955). Estimates of genetic and environmental variability in soybeans. Agronomy Journal 47, 314–318. DOI: https://doi.org/10.2134/agronj1-955.00021962004700070009x.
John, R., and Singla, A. (2021). Functional foods: Components, health benefits, challenges, and major projects. DRC Sustainable Future 2, 61-72. DOI: https://doi.org/10.37281/DRCSF/2.1.7.
Kamrul-Hasan, A.B.M., Yadav, A., Mondal, E., Nepali, R.B., Nur-A-Musabber, N., and Aalpona, F.T.Z. (2024). Role of chia seed (Salvia hispanica L.) supplements in managing type 2 diabetes mellitus: A systematic review and meta analysis. Bangladesh Journal of Endocrinology and Metabolism 3, 9–18. DOI: https://doi.org/10.4103/bjem.bjem_1_24.
Karim, M.M., Ashrafuzzaman, M.D., and Hossain, M.A. (2015). Effect of planting time on the growth and yield of chia (Salvia hispanica L.). Asian Journal of Medical and Biological Research 1, 502-507. DOI: https://doi.org/10.3329/ajmbr.v1i3.26469.
Karimi, M., Pirzad, S., Shirsalimi, N., Ahmadizad, S., Hashemi, S.M., Karami, S., Kazemi, K., Shahir-Roudi, E., and Aminzadeh, A. (2024). Effects of chia seed (Salvia hispanica L.) supplementation on cardiometabolic health in overweight subjects: A systematic review and meta-analysis of RCTs. Nutrition and Metabolism 21. DOI: https://doi.org/10.1186/s12986-024-00847-3.
Kirsch, B., Fisher, J.B., Piechota, T., Hassani, M., Suardiaz, D.C., Puri, R., Cahill, J., and Atamian, H.S. (2024). Satellite observations indicate that chia uses less water than other crops in warm climates. Communications Biology 7, 1. DOI: https://doi.org/10.1038/s42003-024-06841-y.
Machaj, D., Stawińska-Dudek, J., Józefowicz, W., and Brzoza, M. (2025). Omega-3 fatty acids and health. A literature review. Quality in Sport 41, 60187. DOI: https://doi.org/10.12775/qs.2025.41.60187.
Meena, Y.K., Jadhao, B.J., and Kale, V.S. (2014). Genetic analysis of agronomic traits in coriander. SABRAO Journal of Breeding and Genetics 46, 265–273. Miao, L., Wang, X., Yu, C., Ye, C., Yan, Y., and Wang, H. (2024). What factors control plant height? Journal of Integrative Agriculture 23, 1803–1824. DOI: https://doi.org/10.1016/j.jia.2024.03.058.
Mihafu, F.D., Kiage, B.N., Kimang’a, A.N., and Okoth, J.K. (2020). Effect of chia seeds (Salvia hispanica) on postprandial glycaemia, body weight and hematological parameters in rats fed a high-fat and fructose diet. International Journal of Biological and Chemical Sciences, 14, 1752-1762. DOI: https://doi.org/10.4314/ijbcs.v14i5.20.
Miller, P.A., Williams Jr, J.C., Robinson, H.F., and Comstock, R.E. (1958). Estimates of genotypic and environmental variances and covariances in upland cotton and their implications in selection. Agronomy Journal 50, 126-131.
Motyka, S., Skała, E., Ekiert, H., and Szopa, A. (2023). Health-promoting approaches of the use of chia seeds. Journal of Functional Foods 103, 105480. DOI: https://doi.org/10.1016/j.jff.2023.105480.
Muñoz, L.A., Cobos, A., Diaz, O., and Aguilera, J.M. (2013). Chia seed (Salvia hispanica): an ancient grain and a new functional food. Food reviews international 29, 394-408. DOI: https://doi.org/10.1080/87559129.2013.818014.
Nahar, K. (2024). Chia seed (Salvia hispanica L.) biology: A superfood cereal for healthy life - An overview. Journal of Plant Biota 4, 06–10. DOI: https://doi.org/10.51470/jpb.2025.4.1.06.
Nikpayam, O., Jafari, A., Safaei, E., Naghshi, N., Najafi, M., and Sohrab, G. (2023). Effect of chia product supplement on anthropometric measures, blood pressure, glycemic-related parameters, lipid profile and inflammatory indicators: A systematic and meta-analysis. Journal of Functional Foods 110, 105867. DOI: https://doi.org/10.1016/j.jff.2023.105867.
Njoka, M., Mwenda, C.M., Masinde, P., Kirigiah, R., and Kemboi, V. (2024). Agronomic advances and challenges of chia production in Kenya: A review. Asian Journal of Agricultural and Horticultural Research 11, 58–74. DOI: https://doi.org/10.9734/ajahr/2024/v11i3330.
Ogunnowo, O.C., Omoba, O.S., Olagunju, A.I., Godwin, S.A., and Ishola, D.T. (2024). Nutritional, phytochemical, functional, and antioxidant properties of ACHA, chia, and soycake flour blends. Journal of Biochemistry International 13–25. DOI: https://doi.org/10.56557/jobi/2024/v11i18826.
Panghal, A., Kumar, N., Kumar, S., Kumari, A., Chhikara, N. (2022). Food function and health benefits of functional foods. In “Bioprocessing in Food Functional Foods” (N. Chhikara, A. Panghal, G. Chaudhary, eds.), pp 419-441. Scrivener Publishing. DOI: https://doi.org/10.1002/9781119776345.ch12.
Rasha, S., El-Sheshtawy, A.A., and Ali, H.E. (2020). Phenology, architecture, yield, and fatty acid content of chia in response to sowing date and plant spacing. Fayoum Journal of Agricultural Research and Development 34, 314-331.
Risi, J.C., and Galwey, N.W. (1989). The pattern of genetic diversity in the Andean grain crop quinoa (Chenopodium quinoa Willd). Associations between characteristics. Euphytica 41, 147–162. DOI: https://doi.org/10.1007/BF00022424.
Robinson, H.F., Comstock, R.E., and Harvey, P.H. (1949). Estimates of heritability and the degree of dominance in corn. Agronomy Journal 41, 353–359. DOI: https://doi.org/10.2134/agronj1-949.00021962004100080005x.
Rodríguez-Abello, D.C., Navarro-Alberto, J.A., Ramírez-Avilés, L., and Zamora-Bustillos, R. (2018). The effect of sowing time on the growth of chia (Salvia hispanica L.): What do nonlinear mixed models tell us about it. PLoS One 13, e0206582. DOI: https://doi.org/10.1371/journal.pone.0206582.
Rodríguez, M.E., Lobo-Zavalía, R.I., Acreche, M.M., Castaldo, V., Pérez, M., Schneider-Teixeira, A., Deladino, L., and Ixtaina, V.Y. (2022). Characterization and agronomic evaluation of chia germplasm in La Plata, Buenos Aires, Argentina. Biology and Life Sciences Forum 17, 16. DOI: https://doi.org/10.3390/blsf2022017016.
Roka, P., Shrestha, S., Adhikari, S.P., Neupane, A., Shreepaili, B., and Bista, M.K. (2024). A review on genetic parameters estimation, trait association, and multivariate analysis for crop improvement. Archives of Agriculture and Environmental Science 9, 618–625. DOI: https://doi.org/10.26832/24566632.2024.0903-029.
Saadh, M.J., Abosaoda, M.K., Baldaniya, L., Kalia, R., Arya, R., Mishra, S., Chauhan, A.S., Kumar, A., & Alizadeh, M. (2024). The effects of chia seed (Salvia hispanica L.) consumption on blood pressure and body composition in adults: A systematic review and meta-analysis of randomized controlled trials. Clinical Therapeutics 47, 168-175. DOI: https://doi.org/10.1016/j.clinthera.2024.11.012.
Sarker, U., Azam, M.G. and Talukder, M.Z.A. (2022). Genetic variation in mineral profiles, yield contributing agronomic traits, and foliage yield of stem amaranth. Genetika 54, 91-108. DOI: https://doi.org/10.2298/GENSR2201091S.
Saroha, A., Pal, D., Kaur, V., Kumar, S., Bartwal, A., Aravind, J., Radhamani, J., Rajkumar, S., Kumar, R., Gomashe, S.S., and Sengupta, A. (2022). Agro-morphological variability and genetic diversity in linseed (Linum usitatissimum L.) germplasm accessions with emphasis on f lowering and maturity time. Genetic Resources and Crop Evolution 69, 315-333. DOI: https://doi.org/10.1007/s10722-021-01231-3.
Singh, A.C.H.I.L.A. and Tewari, N.A.L.I.N.I. (2015). Predictors of linseed improvement identified through correlation and path coefficient analysis. Current Advances in Agricultural Sciences 7, 114. DOI: https://doi.org/10.5958/2394-4471.2015.00028.3.
Singh, N.U., Venkatachalapathi, V., Amrutha, T.G., Naveen, D.V., and Reddy, M.S. (2023). Crop growth, yield attributes, yield, and quality of chia (Salvia hispanica L.) as influenced by Spacing and Fertilizer Levels. International Journal of Environment and Climate Change 13, 1585 1597. DOI: https://doi.org/10.9734/ijecc/2023/v13i102814.
Sosa-Baldivia, A., Ruiz-Ibarra, G., de la Torre, R.R.R., López, R.R. y López, A.M. (2018). The chia (Salvia hispanica): past, present, and future of an ancient Mexican crop. Australian Journal of Crop Science 12, 1626-1632.
Thada, A., Choudhary, B.R., and Bhardwaj, R. (2021). Assessment of genetic divergence and heritability paradigm in chia (Salvia hispanica L.). Medicinal Plants-International Journal of Phytomedicines and Related Industries 13, 145-150. DOI: https://doi.org/10.5958/0975-6892.2021.00016.2.
Umesh, M.R., Angadi, S., Gowda, P., Ghimire, R., and Begna, S. (2019). Climate-resilient minor crops for food security. Agronomic Crops 1, 19-32. DOI: https://doi.org/10.1007/978-981-32-9151-5_2.
Vera-Cespedes, N., Muñoz, L.A., Rincón, M. Á., & Haros, C.M. (2023). Physico-chemical and nutritional properties of chia seeds from Latin American countries. Foods 12, 3013. DOI: https://doi.org/10.3390/foods12163013.
Xingú-López, A., González-Huerta, A., Cruz-Torres, E.D.L., Sangerman-Jarquín, D.M., Montes Hernandez, S. and Rubí-Arriaga, M. (2022). Caracterización agronómica de germoplasma de Salvia hispanica L. Revista Mexicana de Ciencias Agrícolas 13, 1361-1371. DOI: https://doi.org/10.29312/remexca.v13i8.2647.
Xu, R., Molenaar, A. J., Chen, Z., and Yuan, Y. (2025). Mode and mechanism of action of omega-3 and omega-6 unsaturated fatty acids in chronic diseases. Nutrients 17, 1540. https://doi.org/10.3390/nu17091540.
Zare, T., Fournier-Level, A., Ebert, B., & Roessner, U. (2024). Chia (Salvia hispanica L.), a functional ‘superfood’: new insights into its botanical, genetic and nutraceutical characteristics. Annals of Botany 134, 725-746. https://doi.org/10.1093/aob/mcae123.
Downloads
Published
How to Cite
Issue
Section
License
All publications by Journal of Tropical Crop Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



