Grafting-Induced Phenotypic and Genomic Variations in Cassava (Manihot esculenta Crantz) through Interspecific Compatibility with M. Glaziovi

Authors

  • Umi Tahniah Ulfa Plant Breeding and Biotechnology Program, Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University. Jl. Meranti, IPB Darmaga Campus, Bogor 16680, West Java, Indonesia
  • Sudarsono Sudarsono IPB University https://orcid.org/0000-0003-4688-5628
  • Sintho Wahyuning Ardie Plant Breeding and Biotechnology Program, Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University. Jl. Meranti, IPB Darmaga Campus, Bogor 16680, West Java, Indonesia https://orcid.org/0000-0003-0563-1373
  • Enung Sri Mulyaningsih Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), and Innovation Agency, West Java, Indonesia https://orcid.org/0000-0003-4913-8134
  • N. Sri Hartati Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), and Innovation Agency, West Java, Indonesia https://orcid.org/0000-0001-5441-7563
  • Nurul Aeni Anjarsari Department of Agrotechnology, Faculty of Agriculture, Jenderal Soedirman University, Central Java, Indonesia
  • Prita Sari Dewi Department of Agrotechnology, Faculty of Agriculture, Jenderal Soedirman University, Central Java, Indonesia https://orcid.org/0000-0002-7697-9660

DOI:

https://doi.org/10.29244/jtcs.12.03.559-571

Keywords:

graft union, RAPD, regenerant clone

Abstract

Grafting is a promising approach to enhance cassava (Manihot esculenta Crantz) productivity, particularly in improving tuber yield and quality. Despite its technical simplicity, research on the morphological and molecular consequences of grafting in cassava is limited. This study aimed to quantitatively assess phenotypic differences between grafted and shoot cutting plants and characterize genetic modifications in shoot apical meristems near the graft union. Three splice-grafting combinations were evaluated: M. glaziovii (cv. "Karet")/"Revita RV1" (KR), "Karet"/ "Carvita 25" (KC), and "Carvita 25"/ "Revita RV1" (CR), alongside shoot-cutting plants of each cultivar. Grafted seedlings and conventional cuttings were transplanted to the field, and growth was monitored up to five months after grafting (5 MAG). Shoot bud samples were collected for RAPD analysis at three months (3 MAG). Grafted plants showed differences in morphology compared to controls, especially in branching architecture, branch angle, stem diameter, and internode length. However, the overall plant form and primary stem type remained stable. The color of emerging shoots consistently reflected their genotypic origin, like scion or rootstock, as did the shoot buds nearest the graft union. RAPD analysis using multiple primers revealed polymorphic banding patterns, with OPE-12 producing the most diverse profiles. While specific bands were associated with each cultivar, grafted regenerants often exhibited altered or novel band profiles, suggesting somaclonal variation or graft-induced genetic/epigenetic changes. Some regenerants displayed unexpected band types, such as C1 in R-KR1 and R-KR3, which were absent from their known parental genotypes. Cluster analysis grouped 45 samples into five major clusters and eight subgroups, indicating genetic divergence among certain grafted combinations, particularly "Carvita 25"–"Revita RV1" and M. glaziovii–"Revita RV1". These results demonstrate that grafting can significantly impact cassava phenotype and genome stability. This study shows that interspecific grafting between cassava (Manihot esculenta Crantz) and M. glaziovii can induce significant phenotypic and genomic variations.

References

Andriani, T. (2016). “Application of UPGMA method for the kinship identification type virus types and Ebola epidemic spreading through establishment of phylogenetic trees”. Institut Teknologi Sepuluh Nopember.

Babu, K.N., Rajesh, M.K., Samsudeen, K., Minoo, D., Suraby, E.J., Anupama, K., and Ritto, P. (2014). Randomly Amplified Polymorphic DNA (RAPD) and derived techniques In “Molecular Plant Taxonomy. Methods in Molecular Biology, vol 1115” (P. Besse, eds), pp 191-169, Totowa, NJ. Humana Press. DOI: https://doi.org/10.1007/978-1-62703-767-9_10.

Baiyeri, K.P., and Mbah, C.N. (2022). Effect of grafting on the secondary metabolite profiles and stress responses in plants. International Journal of Agricultural Science 10, 215–223.

Bangthong, P., Vuttipongchaikij, S., Kongsil, P., Ceballos, H., and Kittipadakul, P. (2021). Evaluation of Manihot glaziovii scion–cassava understock grafting for cassava growth and root yield during rainy and dry seasons. Journal of Crop Improvement 36, 193–206. DOI: https://doi.org/10.1080/15427528.2021.1931609.

Chen, H., and Wang, Y.Q. (2006). Genetic variation in the graft union of tomato and eggplant. American-Eurasian Journal of Agricultural and Environmental Science 1, 37–41.

Elida, S., and Hamidi, W. (2009). Analisis pendapatan agroindustri rengginang ubi kayu di Kabupaten Kampar Provinsi Riau. Jurnal Ekonomi Indonesia 17, 109–119.

Fathima, A.A., Sanitha, M., Tripathi, L., and Muiruri, S. (2023). Cassava (Manihot esculenta) dual use for food and bioenergy: A review. Food and Energy Security 12. DOI: https://doi.org/doi.org/10.1002/fes3.380.

Fukuda, W.M.G., Guevara, C.L., Kawuki, R., and Ferguson, M.E. (2010). “Selected Morphological and Agronomic Descriptors for the Characterization of Cassava” pp 25. International Institute of Tropical Agriculture (IITA). Ibadan, Nigeria.

Gakpetor, P.M., Mohammed, H., Moreti, D., and Nassar, N.M.A. (2017). Periclinal chimera technique: New plant breeding approach. Genetics and Molecular Research 16. DOI: https://doi.org/10.4238/gmr16039790.

Goldschmidt, E. (2014). Plant grafting: New mechanism, evolutionary implication. Plant Physiology 5, 727. DOI: https://doi.org/10.3389/fpls.2014.00727.

Hartati, and Hartati N.S. (2016). Efisiensi grafting enam genotip ubi kayu hasil seleksi untuk mendukung peningkatan produksi In “Proceedings of the Kongres Teknologi Nasional 2016: Inovasi Teknologi untuk Kejayaan Bangsa dan Negara” (E.L. Dewi, eds), pp. 796–803. Jakarta, Indonesia, 25–27 July 2016. BPPT Press.

Jones, E.S., Sullivan, H., Bhattramakki, D., Smith, J.S.C. (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theoretical and Applied Genetics 115, 361–371. DOI: https://10.1007/S00122-007-0570-9.

Junior, L.L.R., Carvalho, E.V., Moreira, A.S., Marques, J.P.R., Stuchi, E.S., Pena, L., and Girardi, E.A. (2022). Graft compatibility classification within Aurantioideae based on biometric traits and the anatomy of graft union. Agriculture 12. DOI: https://doi.org/10.3390/agriculture12010076.

Karaca, M., Kizir, S., and Kafkas, S. (2020). Effects of rootstock on shoot growth and fruit quality of grafted melon (Cucumis melo L.). Scientia Horticulturae 272, 109576. DOI: https://doi.org/10.1016/j.scienta.2020.109576.

Khasanah, Y., Indrianingsih, A.W., Murdiati, A., and Santoso, U. (2022). Comparison of physicochemical characteristics, pasting properties, and functional group of MOCAF from different high beta carotene-cassava varieties. Proceedings of the 7th International Symposium on Applied Chemistry 2021, 2493. DOI: https://doi.org/10.1088/1742-6596/2493/1/012006.

Kouassi, J.L., Kahia, J., Diby, L., Kouassi, K., Béné, C., and Kouamé, C. (2019). Comparison of grafting techniques and their effects on some growth parameters of ten elite cocoa clones (Theobroma cacao L.). African Journal of Agricultural Research 13, 2249–2255.

Loupit, G., and Cookson, S.J. (2020). Identifying molecular markers of successful graft union formation and compatibility. Frontiers in Plant Science 11. DOI: https://doi.org/10.3389/fpls.2020.610352.

McIntyre, C.L., Goode, M., Monks, T., and Bonnett, G.D. (2009). The complex genetic structure of sugarcane limits identification of additional SNP-defined simplex alleles in microsatellite loci. Tropical Plant Biology 2, 133–142. DOI: https://doi.org/10.1007/S12042-009-9035-4.

Melnyk, C.W., and Meyerowitz, E.M. (2015). Plant grafting. Current Biology 25, 183–188. DOI: https://doi.org/10.1016/j.cub.2015.01.029.

Mohidin, S.R.N.S.P., Moshawih, S., Hermansyah, A., Asmuni, M.I., Shafqat, N., and Ming, L.C. (2023). Cassava (Manihot esculenta Crantz): a systematic review for the pharmacological activities, traditional uses, nutritional values, and phytochemistry. Journal of Evidence Based Integrative Medicine 28. DOI: https://doi.org/10.1177/2515690X231206227.

Omokolo, N.D., and Nkemka, L.C. (2018). The influence of grafting on internode length and branch angles of various bamboo species. Journal of Forestry and Ecology 26, 45–58.

Panchariya, D.C., Dutta, P., Ananya, Mishra, A., Chawade, A., Nayee, N., Azam, S., Gandham, R.K., Majumdar, S., and Kushawa, S.K. (2024). Genetic marker: A genome mapping tool to decode genetic diversity of livestock animals. Frontiers in Genetics 15, 1-17. DOI: https://doi.org/10.3389/fgene.2024.1463474.

Pramudi, M.I., Puspitarini, R.D., and Rahardjo, B.T. (2014). Keanekaragaman dan kekerabatan lalat buah (Diptera: Tephritidae) di Kalimantan Selatan berdasarkan karakter morfologi dan molekuler (RAPD-PCR dan sekuensing DNA). Jurnal HPT Tropika 13, 191–202. DOI: https://doi.org/doi.org/10.23960/j.hptt.213192-202.

Probojati, R.T., Wahyudi, D., and Hapsari, L. (2019). Clustering analysis and genome inference of Pisang Raja local cultivars (Musa spp.) from Java Island by random amplified polymorphic DNA (RAPD) marker. Journal of Tropical Biodiversity and Biotechnology 4, 42-53. DOI: https://doi.org/10.22146/jtbb.44047.

Rivard, C.L., and Louws, F.J. (2008). Grafting to manage soilborne diseases in heirloom tomato production. Horticultural Science 43, 2104 2111.

Rodrigues, J.D., et al. (2016). Grafting enhances photosynthesis and nitrogen absorption in watermelon. Frontiers in Plant Science 7, 104 112.

Santanoo, S., Ittipong, P., Banterng, P., Vorasoot, N., Jogloy, S., Vongcharoen, K., and Theerakulpisut, P. (2024). Photosynthetic performance, carbohydrate partitioning, growth, and yield among cassava genotypes under full irrigation and early drought treatment in a tropical savanna climate. Plants 13, 2049. DOI: https://doi.org/doi.org/10.3390/plants13152049.

Serra, I., Strever, A., Myburgh, P.A., and Deloire, A. (2014). The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of Grape and Wine Research 20, 1–14. DOI: https://doi.org/doi.org/10.1111/ajgw.12054.

Souza, L.S., Diniz, R.P., Neves, R.D.J., Alves, A.A.C., and Oliveira, E.J.D. (2018). Grafting as a strategy to increase flowering of cassava. Scientia Horticulturae 240, 544 551. DOI: https://doi.org/doi.org/10.1016/j.scienta.2018.06.070.

Sulistyawati, P., and Widyatmoko. (2017). Keragaman genetik populasi kayu merah (Pterocarpus indicus Willd) menggunakan penanda random amplified polymorphism DNA (RAPD). Jurnal Pemuliaan Tanaman Hutan 11, 67–76. Turhan, A., Ozmen, N., Kuscu, H., Serbeci, M.S., and Seniz, V. (2012). Influence of rootstock on yield, fruit characteristics, and quality of watermelon. Horticulture, Environment and Biotechnology 53, 336–341.

Wang, J., Jiang, L., and Wu, R. (2016). Plant grafting: How genetic exchange promotes vascular reconnection. New Phytologist 214, 56–65.

Warschefsky, E.J., Klein, L.L., Frank, M.H., Chitwood, D.H., Londo, J.P., von Wettberg, E.J.B., and Miller, A.J. (2016). Rootstocks: Diversity, domestication, and impacts on shoot phenotypes. Trends in Plant Science 21, 418-437.

Widiyanti. (2007). “Studi Variasi Morfologi Biji, Serbuk Sari, dan Pola Pita Isoenzim Padi (Oryza sativa var. Rojolele)”. Faculty of Agriculture, Universitas Sebelas Maret, Surakarta.

Zakiyah, R., Siregar, U.J., and Hartati, N.S. (2017). Karakterisasi morfologi sengon (Paraserianthes falcataria L. Nielsen) hasil mutasi radiasi sinar gamma. Jurnal Silvikultur Tropika 8, 41–47.

Zhang, D.H., Meng, Z.H., Xiao, W.M., Wang, X.C., and Sodmergon. (2002). Graft-induced inheritable variation in mungbean and its application in mungbean breeding. Acta Botanica Sinica 44, 832–837.

Downloads

Published

2025-10-22

How to Cite

Ulfa, U. T., Sudarsono, S., Ardie, S. W., Mulyaningsih, E. S., Hartati, N. S., Anjarsari, N. A., & Dewi, P. S. (2025). Grafting-Induced Phenotypic and Genomic Variations in Cassava (Manihot esculenta Crantz) through Interspecific Compatibility with M. Glaziovi. Journal of Tropical Crop Science, 12(03), 559–571. https://doi.org/10.29244/jtcs.12.03.559-571