Growth Diversity, Total Phenol, and Flavonoid of Various Cayenne Pepper (Capsicum frutescens) Genotypes Under Shading Stress

Authors

DOI:

https://doi.org/10.29244/jtcs.12.03.536-547

Keywords:

light intensity, microclimate, shade stress, yield performance

Abstract

The study of adaptation mechanisms in cayenne pepper under shade stress is crucial for further exploration. Cayenne pepper is one of the primary commodities that play an essential role in the agricultural industry. This research focuses on the adaptation of morphological, physiological, and secondary metabolite characteristics of cayenne pepper under shading treatments, while also examining the role of microclimate on these characteristics. The study was conducted from August 2023 to February 2024 at the Leuwikopo experimental field of Bogor Agricultural University, using five genotypes of cayenne pepper cultivated under two shading treatments: 0% and 50% shading, achieved using shade netting. The results showed that among the five genotypes tested, shade-loving genotypes, such as “Bonita,” and shade-tolerant genotypes, like “Ori 212,” displayed a greater morphological response in terms of plant height and canopy width under 50% shade compared to the other genotypes. In terms of yield traits, shade-tolerant genotypes, such as “Ori 212”, exhibited the highest fruit weight per plant under a 50% shading treatment compared to the other genotypes. Regarding physiological responses, specifically pigment content, no significant effect of shading treatment was observed. However, in terms of secondary metabolite content, all genotypes responded by increasing total phenol and flavonoid levels when grown in unshaded conditions or under full light intensity. This study provides insights into the adaptive responses of various cayenne pepper genotypes to microclimatic conditions in their growing environment.

References

Al-Khayri, J.M., Rashmi, R., Toppo, V., Chole, P.B., Banadka, A., Sudheer, W.N., Nagella, P., Shehata, W.F., Al-Mssallem, M.Q., Alessa, F.M., Almaghasla, M.I., and Rezk, A.A.S. (2023). Plant secondary metabolites: the weapons for biotic stress management. Metabolites 13. DOI: https://doi.org/10.3390/metabo13060716.

Amaechi, N.C., Udeogu, E., Okoronkwo, C.U., and Irondi, C.P. (2021). Nutritional and phytochemical profiles of common pepper (Capsicum annum L.) foliage consumed as leafy vegetables in southeast Nigeria. Food Research 5, 136–144. DOI: https://doi.org/10.26656/FR.2017.5(5).675.

Arta, I.M.S.D., Chozin, M.A., and Ritonga, A.W. (2024). Evaluation of growth and yield potential of three varieties of chili pepper (Capsicum frutescens) intercropped with maize (Zea mays) at different planting times. Biodiversitas 25, 3985–3994. DOI: http://doi.org/10.13057/biodiv/d251058.

Bernardy, K., Farias, J.G., Pereira, A.S., Dorneles, A.O.S., Bernardy, D., Tabaldi, L.A., Neves, V.M., Dressler, V.L., and Nicoloso, F.T. (2020). Plants’ genetic variation approach applied to zinc contamination: secondary metabolites and enzymes of the antioxidant system in Pfaffia glomerata accessions. Chemosphere 253. DOI: https://doi.org/10.1016/j.chemosphere.2020.126692.

Bhanbhro, N., Wang, H.J., Yang, H., Xu, X.J., Jakhar, A.M., Shalmani, A., Zhang, R.X., Bakhsh, Q., Akbar, G., Jakhro, M.I., Khan, Y., and Chen, K.M. (2023). Revisiting the molecular mechanisms and adaptive strategies associated with drought stress tolerance in common wheat (Triticum aestivum L.). Plant Stress 24. DOI: https://doi.org/10.1016/j.stress.2023.100298.

Blomme, G., Ntamwira, J., Kearsley, E., Bahati, L., Amini, D., Safari, N., and Ocimati, W. (2020). Sensitivity and tolerance of different annual crops to different levels of banana shade and dry season weather. Front Sustainability and Food System 4, 545926. DOI: https://doi.org/10.3389/fsufs.2020.545926.

Díaz-Pérez, J.C. (2013). Bell pepper (Capsicum annum L.) crop as affected by Shade level: Microenvironment, plant growth, leaf gas exchange, and leaf mineral nutrient concentration. HortScience 48, 175-182. DOI: https://doi.org/10.21273/hortsci.48.2.175.

Desita, A.Y., Sukma, D., and Syukur, M. (2015). Evaluation of horticultural traits of IPB ornamental chili pepper lines at the Leuwikopo Experimental Farm. Jurnal Hortikultura Indonesia 6, 116–123. DOI: https://doi.org/10.29244/jhi.6.2.116-123.

Febrianto, M.R.H., Santosa, E., Susila, A.D., Zaman, S., Widodo, W.D., and Hapsari, D.P. (2024). Light intensities affect canopy architecture and fruit characteristics of Cayenne pepper (Capsicum frutescens L.). Jurnal Hortikultura Indonesia 15, 23–32. DOI: https://doi.org/10.29244/jhi.15.1.23-32.

Franzoni, G., Trivellini, A., Bulgari, R., Cocetta, G., and Ferrante, A. (2019). Bioactive molecules as regulatory signals in plant responses to abiotic stresses. Plant Signaling Molecules. 169–182.

Gustiar, F., Lakitan, B., Budianta, D., and Negara, Z.P. (2023). Assessing the impact on growth and yield in different varieties of chili pepper (Capsicum frutescens) intercropped with chaya (Cnidoscolus aconitifolius). Biodiversitas 24, 2639–2646. DOI: https://doi.org/10.13057/biodiv/d240516.

Handriawan, A., Respatie, D.W., and Tohari, T. (2016). Pengaruh intensitas naungan terhadap pertumbuhan dan hasil tiga kultivar kedelai (Glycine max (L.) Merrill) di lahan pasir Pantai Bugel, Kulon Progo. Vegetalika 5, 1-14.

Huang, K., Lin, L., Liao, M., Liu, J., Liang, D., Xia, H., Wang, X., Wang, J., and Deng, H. (2021). Effects of intercropping with different Solanum plants on the physiological characteristics and cadmium accumulation of Solanum nigrum. International Journal of Environmental and Analytical Chemistry 101, 2835–2847. DOI: https://doi.org/10.1080/03067319.2020.1711898.

Hussain, S., Pang, T., Iqbal, N., Shafiq, I., Skalicky, M., Brestic, M., Safdar, M.E., Mumtaz, M., Ahmad, A., Asghar, M.A., Raza, A., Allakhverdiev, S.I., Wang, Y., Wang, X.C., Yang, F., Yong, T., Liu, W., and Yang, W. (2020). Acclimation strategy and plasticity of different soybean genotypes in intercropping. Functional Plant Biology 47, 639–650. DOI: https://doi.org/10.1071/FP19161.

Jadidi, M., Mumivand, H., Nia, A.E., Shayganfar, A., and Maggi, F. (2023). UV-A and UV-B combined with photosynthetically active radiation change plant growth, antioxidant capacity, and essential oil composition of Pelargonium graveolens. BMC Plant Biology, 23. DOI: https://doi.org/10.1186/s12870-023-04556-6.

Kabir, M.Y., Nambeesan, S.U., Bautista, J., and Díaz-Pérez, J.C. (2022). Plant water status, plant growth, and fruit yield in bell pepper (Capsicum annum L.) under shade nets. Scientia Horticulturae, 303. DOI: https://doi.org/10.1016/j.scienta.2022.111241.

Kim, K.H., Shawon, M.R.A., An, J.H., Lee, H.J., Kwon, D.J., Hwang, I.C., Bae, J.H., and Choi, K.Y. (2022). Effect of shade screen on sap flow, chlorophyll fluorescence, ndvi, plant growth, and fruit characteristics of cultivated paprika in a greenhouse. Agriculture 12. DOI: https://doi.org/10.3390/agriculture12091405.

Lawag, I.L., Nolden, E.S., Schaper, A.A.M., Lim, L.Y., and Locher, C. (2023). A modified Folin Ciocalteu assay for the determination of total phenolic content in honey. Applied Sciences 13. DOI: https://doi.org/10.3390/app13042135.

Liao, X., Greenspan, P., and Pegg, R.B. (2019). Characterizing the phenolic constituents and antioxidant capacity of Georgia peaches. Food Chemistry 271, 345–353. DOI: https://doi.org/10.1016/j.foodchem.2018.07.163.

Luo, D., Huang, G., Zhang, Q., Zhou, G., Peng, S., and Li, Y. (2023). Plasticity of mesophyll cell density and cell wall thickness and composition play a pivotal role in regulating plant growth and photosynthesis under shading in rapeseed. Annals of Botany 132, 963–978. DOI: https://doi.org/10.1093/aob/mcad140.

Liu, L., Lin, N., Liu, X., Yang, S., Wang, W., and Wan, X. (2020). From chloroplast biogenesis to chlorophyll accumulation: the interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao leaves. Frontiers in Plant Science, 11. DOI: https://doi.org/10.3389/fpls.2020.00256.

Ma, P., Zhou, L., Liao, X.H., Zhang, K.Y., Aer, L.S., Yang, E.L., Deng, J., and Zhang, R.P. (2023). Effects of low light after heading on the yield of direct seeding rice and its physiological response mechanism. Plants 12. DOI: https://doi.org/10.3390/plants12244077.

Meini, M.R., Cabezudo, I., Boschetti, C.E., and Romanini, D. (2019). Recovery of phenolic antioxidants from Syrah grape pomace through the optimization of an enzymatic extraction process. Food Chemistry 283, 257–264 DOI: https://doi.org/10.1016/j.foodchem.2019.01.037.

Mullineaux, P.M., Exposito-Rodriguez, M., Laissue, P.P., and Smirnoff, N. (2018). ROS-dependent signaling pathways in plants and algae exposed to high light: comparisons with other eukaryotes. Free Radical Biology and Medicine 122, 52–64 DOI: https://doi.org/10.1016/j.freeradbiomed.2018.01.033.

Mweta, A.P., and Nnungu, S.I. (2023). Phytochemical status and antioxidant capacity of selected hot pepper varieties cultivated in Tanzania. Bio Research 21, 2019–2030. DOI: https://doi.org/10.4314/br.v21i2.8.

Naikoo, M.I., Dar, M.I., Raghib, F., Jaleel, H., Ahmad, B., Raina, A., Khan, F.A., and Naushin, F. (2019). Role and regulation of plant phenolics in abiotic stress tolerance. Plant Signaling Molecules, 157–168. Paradiso, R., and Proietti, S. (2022). Light quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: the state of the art and the opportunities of modern LED systems. Journal of Plant Growth Regulation 41, 742–780. DOI: https://doi.org/10.1007/s00344-021-10337-y.

Putri, D.R.M., Syukur, M., and Ritonga, A.W. (2025). Variability of yield and yield components of 23 hybrid cayenne pepper (Capsicum frutescens) genotypes under shaded and unshaded conditions. Biodiversitas 26, 396–406. DOI: https://doi.org/10.13057/biodiv/d260139.

Qin, Y., Liu, X., Li, C., Chu, Q., Cheng, S., Su, L., Shao, D., Guo, X., He, Z., and Zhou, X. (2023). Effect of light intensity on celery growth and flavonoid synthesis. Frontiers in Plant Science 14. DOI: https://doi.org/10.3389/fpls.2023.1326218.

Ritonga, A.W., Chozin, M.A., Syukur, M.A., Maharijaya., and Sobir. (2019). Heritability, correlation, and path analysis on various characters of tomato (Solanum lycopersicum) under shading and normal conditions. Jurnal Hortikultura Indonesia 10, 85-93. DOI: https://doi.org/10.29244/jhi.10.2.85-93.

Sahid, Z.D., Syukur, M., Maharijaya, A., and Nurcholis, W. (2022). Quantitative and qualitative diversity of chili (Capsicum annum) genotypes. Biodiversitas 23, 2251-2257. DOI: https://doi.org/10.13057/biodiv/d230230.

Salehinia, S., Didaran, F., Aliniaeifard, S., Zohrabi, S., MacPherson, S., and Lefsrud, M. (2024). Green light enhances the phytochemical preservation of lettuce during postharvest cold storage. PLoS ONE 19. DOI: https://doi.org/10.1371/journal.pone.0311100.

Samanta, M., and Hazra, P. (2019). Microclimate suitability for green and coloured sweet pepper hybrids in open and protected structures in the sub-tropical humid climate of West Bengal. Journal of Agrometeorology 21, 12-17.

Schenke, D., Utami, H.P., Zhou, Z., Gallegos, M.T., and Cai, D. (2019). Suppression of UV-B stress-induced flavonoids by biotic stress: Is there reciprocal crosstalk?. Plant Physiology and Biochemistry 134, 53–63. DOI: http://doi.org/10.1016/j.plaphy.2018.06.026.

Siahaan, G.F., Chozin, M.A., Syukur, M., and Ritonga, A.W. (2023). Estimation of genetic parameters and variability of various cayenne peppers under net shading. Biodiversitas 24, 5912 5919. DOI: http://doi.org/10.13057/biodiv/d241109.

Sims, D.A., and Gamon, J.A. 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures, and developmental stages. Remote Sensing of Environment 81, 337 354. DOI: https://doi.org/10.1016/S0034-4257(02)00010-X.

Su, Y., Yang, H., Wu, Y., Gong, W., Gul, H., Yan, Y., and Yang, W. (2023). Photosynthetic acclimation of shade-grown soybean seedlings to a high light environment. Plants 12. DOI: https://doi.org/10.3390/plants12122324.

Sulistyowati, D., Chozin, M.A., Syukur, M., Melati, M., and Guntoro, D. (2019). The responses of morpho-physiological characters of loving shade genotypes at low light intensity. Journal of Horticulture 29, 23-32.

Susanto, G.W.A., and Sundari, T. (2011). The changes in agronomic characters of soybean germplasm under shading conditions. Jurnal Agronomi Indonesia 39, 1-6.

Taiz, L., and Zeigerb, E. 2010. “Plant physiology. Fifth Edition”. The Benjamin/Cummings pb. Co., Inc., California. pp. 690.

Tan, Z.G., and Qian, Y.L. (2003). Light intensity affects gibberellic acid content in Kentucky bluegrass. Hortscience 38, 113-116. Ulinnuha, Z., and Syarifah, R.N.K. (2022). Photosynthetic pigment content and growth of chili under low light intensity for agroforestry crop development. Agromix 13, 27-33. DOI: https://doi.org/10.35891/agx.v13i1.2783.

Wang, X., Shen, L., Liu, T., Wei, W., Zhang, S., Li, L., and Zhang, W. (2022). Microclimate, yield, and income of a jujube-cotton agroforestry system in Xinjiang, China. Industrial Crops and Products 182, 114941- 114953. DOI: https://doi.org/10.1016/j.indcrop.2022.114941.

Xiang. J., Apea-Bah, F.B., Ndolo, V.U., Katundu, M.C., and Beta, T. (2019). Profile of phenolic compounds and antioxidant activity of f inger millet varieties. Food Chemistry 275, 361-368. DOI: https://doi.org/10.1016/j.foodchem.2018.09.120.

Yue, C., Wang, Z., and Yang, P. (2021). The effect of light on the key pigment compounds of photosensitive etiolated tea plants. Botanical Studies 62, 1-15. DOI: https://doi.org/10.1186/s40529-021-00329-2 .

Zhang, H., Wang, Y., Song, X., Yang, Y., Li, Y., Zhu, Z., Hou, J., Wang, W., Wu, J., Chen, G., Tang, X., Yuan, L., and Wang, C. (2025). A light-harvesting chlorophyll a/b-binding protein from Wucai plays a positive regulatory role in the response to Abiotic Stress. Scientia Horticulturae 339. DOI: https://doi.org/10.1016/j.scienta.2024.113759.

Zubova, M.Y., Goncharuk, E.A., Nechaeva, T.L., Aksenova, M.A., Zaitsev, G.P., Katanskaya, V.M., Kazantseva, V.V., and Zagoskina, N.V. (2024). Influence of primary light exposure on the morphophysiological characteristics and phenolic compounds accumulation of a tea callus culture (Camellia sinensis L.). International Journal of Molecular Sciences 25. DOI: https://doi.org/10.3390/ijms251910420.

Downloads

Published

2025-10-22

How to Cite

Darmawansyah, D., Chozin, M. A., Santosa, E., & Ritonga, A. W. (2025). Growth Diversity, Total Phenol, and Flavonoid of Various Cayenne Pepper (Capsicum frutescens) Genotypes Under Shading Stress. Journal of Tropical Crop Science, 12(03), 536–547. https://doi.org/10.29244/jtcs.12.03.536-547