Mycorrhizae and Biofertilizers Applications Stimulate Pineapple Growth in Acidic Soil
DOI:
https://doi.org/10.29244/jtcs.12.03.683-694Keywords:
crop health, microbes, soil fertility, soil health, sustainable agricultureAbstract
Pineapple is a leading commodity worldwide and can grow in a variety of mineral and organic soils. Excessive use of inorganic fertilizers has a detrimental impact on soil and crop health. Biofertilizers contain beneficial microorganisms that can enhance soil fertility, improve soil health, and promote sustainable crop production. This study aimed to investigate the crucial role of biofertilizers and mycorrhizae in promoting the vegetative growth of pineapple in acidic soils. The experiment was conducted using a completely randomized design with nine treatment levels and five replications. The results showed that the mycorrhizae applied at 5 g per plant, combined with full doses of chemical fertilizer (0.5 g ZA, 2 g DAP, and 2 g KCl per plant), produced the highest mycorrhizal colonization in treatment P4. Meanwhile, Provibio® biofertilizer at 5 mL per plant (diluted in 0.5 L water), mycorrhizae at 2.5 g per plant, and half doses of chemical fertilizer (0.25 g ZA, 1 g DAP, and 1 g KCl per plant (P8), improved vegetative growth and soil properties (pH, organic C, and total N) and supported the highest microbial population in the rhizosphere (26.05 × 10⁴ CFU.g-1 soil). This study demonstrated that the combined application of biofertilizers and mycorrhizae in moderate doses is more effective than full single-dose applications, leading to healthier soils and stronger vegetative growth of pineapple in acidic soils.
References
Adebajo, S., Akintokun, P., Ezaka, E., Ojo, A., Olannye, D., and Ayodeji, O. (2021). Use of termitarium soil as a viable source for biofertilizer and biocontrol. Bulletin of the National Research Centre 45. DOI: https://doi.org/10.1186/s42269-021-00560-8.
Agboola, A., Ogunnusi, T., Dayo-Olagbende, G., and Akpor, O. (2023). Growth promoting potential of phosphate solubilizing enterobacter cloaca and enterobacter hormaechei on maize and cowpea seedlings. The Open Agriculture Journal 17. DOI: https://doi.org/10.2174/18743-315-v17-230621-2023-13.
Akpode, C., Assogba, S.A., Hoteyi, S.M.I., et al. (2024). Impact of combinations of native arbuscular mycorrhizal fungi and mineral fertilizers on the production and nutrition of maize Plants on ferruginous soil. Agricultural Research 13. DOI: https://doi.org/10.1007/s40003-024-00808-5.
Anwar, S., Santosa, E., and Purwono, P. (2023). Cassava growth and yield on ultisol of different soil organic carbon content and npk fertilizer levels. Indonesian Journal of Agronomy 51, 312-323. DOI: https://doi.org/10.24831/jai.v51i3.47806.
Alayya, N.P., and Prasetya, B. (2022). Kepadatan spora dan persen koloni mikoriza vesikula arbuskula (mva) pada beberapa tanaman pangan di lahan pertanian kecamatan jabung malang. Jurnal Tanah dan Sumberdaya Lahan 9, 267–276. DOI: https://doi.org/10.21776/ub.jtsl.2022.009.2.7.
Adhyaningtyas, R., Rahmawati, R., and Mukarlina, M. (2023). Effect of phosphate solubilizing and nitrogen-fixing bacteria on pontianak siam citrus (Citrusnobilis var. microcarpa) seed germination. Nusantara Bioscience 15. DOI: https://doi.org/10.13057/nusbiosci/n150211.
Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N., and Zhan, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science 10, 1068. DOI: https://doi.org/10.3389/fpls.2019.01068.
Bellido, E., Cabello, P., and Agüera, E. (2021). Physiological alteration in sunflower plants (Helianthus annuus L.) exposed to high CO2 and arbuscular mycorrhizal fungi. Plants 10, 937. DOI: https://doi.org/10.3390/plants10050937.
Bhardwaj, D., Ansari, M.W., Sahoo, R.K., and Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories 13. DOI: https://doi.org/10.1186/1475-2859-13-66.
[BPS] Statistic, Indonesia. (2021). “Statistik Hortikultura 2021”. Jakarta (ID), Badan Pusat Statistik Republik Indonesia.
[BPSI] Badan Pengujian Standar Instrumen Tanah dan Pupuk. (2023). “Petunjuk Teknis Analisis Kimia Tanah, Tanaman, Air dan Pupuk”. Edition 3. Bogor (ID): BPSI.
Brundrett, M.C., Bougher, N., Dell, B., Grove, T., and Malajczuk, N. (1996). “Working with Mycorrhizal in Forestry and Agriculture”. Canberra (AU). Pirie Printers.
Chen, W., Zhang, X., Hu, Y., and Zhao, Y. (2023). Effects of different proportions of organic fertilizer in place of chemical fertilizer on microbial diversity and community structure of pineapple rhizosphere soil. Agronomy 14, 59. DOI: https://doi.org/10.3390/agronomy14010059.
Debashis, K., and Somdatta, G. (2022). Aspects, problems, and utilization of Arbuscular Mycorrhizal (AM) application as bio-fertilizer in sustainable agriculture. Current Research in Microbial Sciences 3, 100107. DOI: https://doi.org/10.1016/j.crmicr.2022.100107.
Fajarindo, F., Suwardi, Iskandar, and Limin, A. (2023). Utilizing FABA and lignite in compost to improve ultisol chemical properties. Journal of Tropical Soil 29. DOI: http://dx.doi.org/10.5400/jts.2024.v29i1.41-48.
Fikrinda, F., Khalidin, K., and Arabia, T. (2022). Recovering soil quality of elephant grass cultivated suboptimal land through mycorrhizae and organic fertilizer. Knowledge E Life Sciences 2022, 180-192. DOI: https://doi.org/10.18502/kls.v7i3.11119.
[FAO]. 2021. “World Food and Agriculture Statistical Yearbook 2021”. Rome. https://doi.org/10.4060/cb4477en.
Fall, A.F., Nakabonge, G., Ssekandi, J., Founoune Mboup, H., Apori, S.O., Ndiaye, A., Badji, A., and Ngom, K. (2022). Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil. Frontiers in Fungal Biology 3, 723892. DOI: https://doi.org/10.3389/ffunb.2022.723892.
Hazra, F., Santosa, D.A., Sabieq, P.M., and Sukmana, D. (2019). Pertumbuhan dan produksi nanas varietas MD2 dengan pemberian pupuk hayati dan organo mineral di pina plantation, Subang. Prosiding Seminar Nasional Lingkungan Lahan Basah 4, 45-51.
Herawati, A., Syamsiyah, J., Mujiyo, M., Rochmadtulloh, M., Susila, A., and Romadhon, M. (2021). Mycorrhizae and a soil ameliorant on improving the characteristics of sandy soil. Sains Tanah-Journal of Soil Science and Agroclimatology 18, 73. DOI: https://doi.org/10.20961/stjssa.v18i1.43697.
Hanyabui, E., Frimpong, K., Annor-Frempong, F., and Atiah, K. (2024). Effect of pineapple waste biochar and compost application on the growth and yield of pineapple varieties in Ghana. Frontiers in Agronomy 6. DOI: https://doi.org/10.3389/fagro.2024.1331377.
Hestrin, R., Hammer, E.C., Mueller, C.W., and Lehmann, J. (2019). Synergies between mycorrhizal fungi communities and increase soil plant microbial nitrogen acquisition. Communications Biology 2. DOI: https://doi.org/10.1038/s42003-019-0481-8.
Huang, W., Ratkowsky, D.A., Hui, C., Wang, P., Su, J., and Shi, P. (2019). Leaf flesh weight versus dry weight: which is better for describing the scaling relationship between leaf biommass and leaf area for broad-leaed plants?. Forests 10. DOI: https://doi.org/10.3390/f10030256.
Janket, A., Vorasoot, N., Toomsan, B., Kaewpradit, W., Theerakulpisut, P., Holbrook, C.C., Kvien, C.K., Jogloy, S., and Banterng, P. (2021). Quantitative evaluation of macro-nutrient uptake by cassava in a tropical savanna climate. Agriculture 11, 1199. DOI: https://doi.org/10.3390/agriculture11121199.
Krasilnikov, P., Taboada, M.A., and Amanullah. (2022). Fertilizer use, soil health and agricultural sustainability. Agriculture 12, 462. DOI: https://doi.org/10.3390/agriculture12040462.
Krishan, H., Singh, R.K.D., and Langpoklakpam, B. (2017). Effect of variety and bio fertilizer on growth and yield of pineapple (Ananas comosus (L.) Merr.). Journal of Pharmacognosy and Phytochemistry 6, 2568-2571.
Latief, F.E., Elfasina, and Sudirman. (2017). Efektivitas pengurangan pupuk npk dengan pemberian pupuk hayati Provibio terhadap budidaya tanaman kedelai Edamame. Jurnal Agrosains dan Teknologi 2, 105-120.
Luo, M., Shi, Z., Yang, S., Zhang, M., Wu, S., and Zhang, M. (2022). Mychorrizal types regulated the responses of biomass in diferent plant organs to an addition. Agronomy 12. DOI: https://doi.org/10.3390/agronomy12102357.
Marder, M., Konrad, O., Ilha, V., and Granada, C. (2019). Biogas production from slaughterhouse wastewaters and use of biofertilizer obtained for biodegradation of aromatic hydrocarbons. Environmental Quality Management 29, 97-104. DOI: https://doi.org/10.1002/tqem.21669.
Natalia, R., Anwar, S., Sutandi, A., Nugroho, B., and Cahyono, P. (2018.) Karakteristik kimia dan f isika tanah di area pertanaman nanas dengan perbedaan tingkat produksi. Jurnal Ilmu Tanah dan Lingkungan 20, 13-18. DOI: http://dx.doi.org/10.29244/jitl.20.1.13-18.
Olaleye, O., and Fagbola, O. (2020). Quality and yield of turmeric (Curcuma longa linn.) in response to mycorrhiza and nitrogen application. Amazonian Journal of Plant Research 4, 587-593. DOI: https://doi.org/10.26545/ajpr.2020.b00068x.
Pacioni, G. (1992). Wet-sieving and decanting techniques for the extraction of spores of vesicular-arbuscular fungi In “Methods in Microbiology” (J.R. Norris, D.J. Read, A.K. Varma, eds.), pp 317-322, London (GB), Academic Press.
Patoine, G., Eissenhauer, N., Cesarz, S., Phillips, H.R.P., Xu, X., Zhang, L., and Guerra, C.A. (2022). Drivers and trends of global soil microbial carbon over two decades. Nature Communications 13. DOI: https://doi.org/10.1038/s41467-022-31833-z.
Püschel, D., Janoušková, M., Voříšková, A, Gryndlerová, H., Vosátka, M., and Jansa, J. (2017). Arbuscular mycorrhiza stimulates biological nitrogen fixation in two medicago spp. through improved phosphorus acquisition. Frontiers in Plant Science 8. DOI: https://doi.org/10.3389/fpls.2017.0039.
Rajapakse, S., and Miller, J.C. (1992). 15 Methods for studying vesicular-arbuscular mycorrhizal root colonization and related root physical properties. Method in Microbiology 24, 301-316.
Reinhardt, D.H.R.C., Bartholomer, D.P., Souza, F.V.D., de Carvalho, A.C.P.P., de Pádua, T.R.P., Junghans, D.T., and de Matos, A.P. (2017). Advances in pineapple plant propagation. Revista Brasileira de Fruticultura 40. DOI: http://doi.org/10.1590/0100-29452018302.
Ryan, P.R., Delhaize, E., Watt, M., Richardson, A.E. (2016). Plant roots: understanding structure and function in an ocean of complexity. Annals of Botany 118, 555–559. DOI: http://doi.org/10.1093/aob/mcw192.
Saleh, S., Anshary, A., Made, U., Mahfudz, M., and Basir-Cyio, M. (2021). Application of mycorrhizae and Beauveria in organic farming system effectively control leafminers and enhance shallot production. Agrivita Journal of Agricultural Science 43. DOI: https://doi.org/10.17503/agrivita.v1i1.2831.
Saputro, F., and Kurniawati, H. (2024). The application of biofertilizer to realize sustainable agricultural program: a review. International Seminar of Science and Technology 3, 133-142. DOI: https://doi.org/10.33830/isst.v3i1.2317.
Setiadi, Y., and Setiawan, A. (2011). Studi status fungi mikoriza arbuskula di areal rehabilitasi pasca penambangan nikel (studi kasus PT INCO Tbk. Sorowako, South Sulawesi). Jurnal Silvikultur Tropika 3, 88-95.
Setiawati, M., Afrilandha, N., Hindersah, R., Suryatmana, P., Fitriatin, B., and Kamaluddin, N. (2023). The effect of beneficial microorganism as biofertilizer application in hydroponic-grown tomato. Sains Tanah-Journal of Soil Science and Agroclimatology 20, 66. DOI: https://doi.org/10.20961/stjssa.v20i1.63877.
St. Subaedah, Andi Ralle and St. Sabahannur, 2019. Phosphate fertilization efficiency improvement with the use of organic fertilizer and its effect on soybean plants in dry land. Pakistan Journal of Biological Sciences 22, 28-33. https://10.3923/pjbs.2019.28.33.
Sutikarini, S., Masulili, A., Suryani, R., Setiawan, S., and Mulyadi, M. (2023). Characteristics of pineapple waste as liquid organic fertilizer and its effect on ultisol soil fertility. International Journal of Multi Discipline Science (Ij-Mds) 6, 38. DOI: https://doi.org/10.26737/ij-mds.v6i1.3754.
Sutrisno, D., Kusuma, Z., and Cahyono, P. (2018). Influence of arbuscular of p availability and growth arbuscular mycorrhiza based biofertilizer in improvement and growth of ananas (Ananas Comosus (L.) Merr) in an acid soil. Jurnal Tanah Dan Sumberdaya Lahan 5, 901-909. DOI: https://jtsl.ub.ac.id/index.php/jtsl/article/view/215.
Susilawati, Mustoyo, Budhisurya, E., Anggono R.C.W., and Simanjuntak, B.H. (2013). Analisis kesuburan tanah dengan indikator mikroorganisme tanah pada berbagai sistem penggunaan lahan di plateau dieng. AGRIC 25, 64-72.
Syahri, S., Giyanto, G., and Mutaqin, K. (2023). Screening of plant growth-promoting endophytic bacteria from the maize roots for biocontrol of Stewart wilt disease. IOP Conference Series Earth and Environmental Science 1133, 012037. DOI: https://doi.org/10.1088/1755-1315/1133/1/012037.
Triguna, Y., Wangiyana, W., and Susilowati, L.E. (2024). Application of mycorrhiza-biofertilizer to increase yield of several varieties of soybean intercropped between maize double rows of different row spacings. International Journal of Life Science and Agriculture Research 3, 590-595. DOI: https://doi.org/10.55677/ijlsar/V03I7Y2024-13.
Utama, M.S.Z., Yahya, S., Sudarmadi, H., Idris, H., and Stiada, Y. (2007). Tanggapan beberapa spesies egum penutup tanaman terhadapat pemberian mikoriza, rizhobium, asam humat dan mekanisme fisiologi toleransi terhadap cekaman Al. Jurnal Akademika 11, 38-38.
Weng, W., Yan, J., Zhou, M., Yao, X., Gao, A., Ma, C., Cheng, J., and Ruan, J. (2022). Roles of arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases. Microorganisms 10. DOI: https://doi.org/10.3390/microorganisms10071266.
Downloads
Published
How to Cite
Issue
Section
License
All publications by Journal of Tropical Crop Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



