Growth Dynamics of Young Avocado (Persea americana Mill) Plants under Drought Stress in Potted Condition

Authors

DOI:

https://doi.org/10.29244/jtcs.12.03.506-515

Keywords:

compensatory growth, flower induction, inflorescence, rewatering

Abstract

Drought stress significantly influences plant metabolic processes, including overall vegetative growth and the transition from the vegetative to the generative phase. Under changing environmental conditions, plants adapt through specific mechanisms to survive unfavorable circumstances, including a reduction in the juvenile phase. This study aimed to examine the effects of drought stress on the growth dynamics of young avocado plants. The experiment consisted of three treatment levels: routine watering as the control (P1), drought stress for 8 weeks (P2), and drought stress for 16 weeks (P3). The 8 week drought stress did not significantly reduce the number of leaves or increase the number of vegetative buds; however, one plant produced flowers at week 33. The drought stress for 16 weeks (P3) significantly reduced the number of leaves but did not affect branch length. Instead, it increased the number of vegetative buds per branch at 16 and 24 weeks after treatment (WAT). Drought stressed plants exhibited a compensatory growth mechanism following rewatering, as demonstrated by an increase in the number of leaves and vegetative buds at 24 WAT.

References

Acosta-Rangel, A., Li, R., Mauk, P., Santiago, L., and Lovatt, C.J. (2021). Effects of temperature, soil moisture and light intensity on the temporal pattern of floral gene expression and flowering of avocado buds (Persea americana cv. Hass). Scientia Horticulturae 280, 109940. DOI: https://doi.org/10.1016/j.scienta.2021.109940.

Azizah, Z.R.N., Sakhidin, Saparso., and Sarjito, A. (2022). Application of paclobutrazol and duration of drought stress to flowering induction in Chokun orange. Caraka Tani: Journal of Sustainable Agriculture 37, 310 320. DOI: https://doi.org/10.20961/carakatani.v37i2.58500.

Bamba, J.P., and Wall, P. (2018). “Avocado tree care on Guam”. University of Guam, College of Natural & Applied Sciences.

BMKG. 2024. "Data Iklim Harian". [accessed 2024 Nov 30]. https://dataonline.bmkg.go.id/beranda.

Chen, D., Wang, S., Xiong, B., Cao, B., and Deng, X. (2015). Carbon/nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. PLoS ONE 10, 1–17. DOI: https://doi.org/10.1371/journal.pone.0137026.

Chen, M., Zhang, T.L., Hu, C.G., and Zhang, J.Z. (2023). The role of drought and temperature stress in the regulation of flowering time in annuals and perennials. Agronomy 13. DOI: https://doi.org/10.3390/agronomy13123034.

Dorantes, L., Parada, L., and Ortiz, A. (2004). “Avocado: Post-harvest operation”. Food and Agriculture Organization of the United Nations (FAO). Rome, Italy. Fauzi, A., Sutari, W., Nursuhud., and Mubarok, S. (2017). Factors affecting on flowering process of mango (Mangifera indica L.). Jurnal Kultivasi 16, 461–465. DOI: https://doi.org/10.24198/kultivasi.v16i3.14340.

Hapuarachchi, N.S., Kämper, W., Wallace, H.M., Hosseini, B.S., Ogbourne, S.M., Nichols, J., and Trueman, S.J. (2022). Boron effects on fruit set, yield, quality and paternity of hass avocado. Agronomy 12. DOI: https://doi.org/10.3390/agronomy12061479.

Khodabin, G., Tahmasebi-Sarvestani, Z., Rad, A.H.S., and Modarres-Sanavy, S.A.M. (2020). Effect of drought stress on certain morphological and physiological characteristics of a resistant and a sensitive canola cultivar. Chemistry and Biodiversity 17. DOI: https://doi.org/10.1002/cbdv.201900399.

Kirigwi, F.M., and Saha, M.C. (2022). Screening of tall fescue genotypes for relative water content and osmotic potential under drought stress. Grassland Research 1, 84–93. DOI: https://doi.org/10.1002/glr2.12021.

Lestari, R., Sukamto, L.A., Aprilianti, P., Wahyuni, S., and Putri, W.U. (2016). Selection of avocado plants based on fruit characters, fat content, and continual harvest along the year in West Java-Indonesia. International Journal on Advanced Science, Engineering and Information Technology 6, 77–83. DOI: https://doi.org/10.18517/ijaseit.6.1.621.

Luo, H.H., Zhang, Y.L., and Zhang, W.F. (2016). Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica 54, 65–73. DOI: https://doi.org/10.1007/s11099-015-0165-7.

Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P.C., and Sohrabi, E. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science 4, 580–585.

Marron, N., Dreyer, E., Boudouresque, E., Delay, D., Petit, J.M., Delmotte, F.M., and Brignolas, F. (2003). Impact of successive drought and re watering cycles on growth and specific leaf area of two Populus x canadensis (Moench) clones, “Dorskamp” and “Luisa-Avanzo.” Tree Physiology 23, 1225–1235. DOI: https://doi.org/10.1093/treephys/23.18.1225.

Mira-García, A.B., Conejero, W., Vera, J., and Ruiz Sánchez, M.C. (2023). Effect of water stress and shading on lime yield and quality. Plants 12. DOI: https://doi.org/10.3390/plants12030503.

Mndela, Y., Ndou, N., and Nyamugama, A. (2023). Irrigation scheduling for small-scale crops based on crop water content patterns derived from UAV multispectral imagery. Sustainability (Switzerland) 15, 1–21. DOI: https://doi.org/10.3390/su151512034.

Niu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q., Ge, C., Zhang, X., Pang, C., and Zhao, X. (2018). The compensation effects of physiology and yield in cotton after drought stress. Journal of Plant Physiology 224-225, 30-48. DOI: https://doi.org/10.1016/j.jplph.2018.03.001.

Putri, D., Gustia, H., and Suryati, Y. (2016). Pengaruh panjang entres terhadap keberhasilan penyambungan tanaman alpukat (Persea americana Mill.). Jurnal Agrosains dan Teknologi 1, 32-44.

Qiao, M., Hong, C., Jiao, Y., Hou, S., and Gao, H. (2024). Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants 13. DOI: https://doi.org/10.3390/plants13131808.

Rahayu, R.S., Poerwanto, R., Efendi, D., and Widodo, W.D. (2020). Severe drought stress influences the success of madura tangerine flower induction. Jurnal Hortikultura Indonesia 11, 13–23. DOI: https://doi.org/10.29244/jhi.11.1.13-23.

Rankenberg, T., Geldhof, B., van Veen, H., Holsteens, K., Van de Poel, B., and Sasidharan, R. (2021). Age-dependent abiotic stress resilience in plants. Trends in Plant Science 26, 692-705. DOI: https://doi.org/10.1016/j.tplants.2020.12.016.

Takeno, K. (2016). Stress-induced flowering: The third category of flowering response. Journal of Experimental Botany 67, 4925–4934. DOI: https://doi.org/10.1093/jxb/erw272.

Thammatha, P., Lapjit, C., Tarinta, T., Techawongstien, S., and Techawongstien, S. (2021). The responses of physiological characteristics and f lowering related gene to the different water stress levels of red-flesh pummelo cultivars (Citrus grandis (L.) Osbeck) own-rooted by air layering propagation under two growing conditions. Horticulturae 7. DOI: https://doi.org/10.3390/horticulturae7120579.

Verti, E.A., Mustikarini E.D., and Lestari, T. (2021). Diversity of avocado germplasm (Persea americana) in Bangka Island based on morphological characters. Seminar Nasional Penelitian dan Pengabdian pada Masyarakat 1, 33–38.

Wang, R., Gui, Y., Zhao, T., Ishii, M., Eguchi, M., Xu, H., Li, T., and Iwasaki, Y. (2020). Determining the relationship between floral initiation and source–sink dynamics of tomato seedlings affected by changes in shading and nutrients. HortScience 55, 457-464. DOI: https://doi.org/10.21273/HORTSCI14753-19.

Wang, X.L., Duan, P.L., Yang, S.J., Liu, Y.H., Qi, L., Shi, J., Li, X.L., Song, P., and Zhang, L.X. (2020). Corn compensatory growth upon post-drought rewatering based on the effects of rhizosphere soil nitrification on cytokinin. Agricultural Water Management 241. DOI: https://doi.org/10.1016/j.agwat.2020.106436.

Wang, X.L., Qin, R.R., Sun, R.H., Wang, J.J., Hou, X.G., Qi, L., Shi, J., Li, X. L., Zhang, Y.F., Dong, P.H., Zhang, L.X., and Qin, D.H. (2018). No post-drought compensatory growth of corns with root cutting based on cytokinin induced by roots. Agricultural Water Management 205, 9–20. DOI: https://doi.org/10.1016/j.agwat.2018.04.035.

Wingler, A. (2018). Transitioning to the next phase: the role of sugar signaling throughout the plant life cycle. Plant Physiology 176, 1075–1084. DOI: https://doi.org/10.1104/pp.17.01229.

Wu, P., Wu, C., and Zhou, B. (2017). Drought stress induces flowering and enhances carbohydrate accumulation in Averrhoa carambola. Horticultural Plant Journal 3, 60–66. DOI: https://doi.org/10.1016/j.hpj.2017.07.008.

Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., and Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae 7. DOI: https://doi.org/https://doi.org/10.3390/horticulturae7030050.

Yudiansyah., Ismiyanti, and Aziz, S.A. (2024). Modification of the spectrophotometric analysis protocol by Sims D. and Gamon to analyze leaf pigment content using green spinach (Amaranthus hybridus) as a model plant. Journal of Tropical Crop Science 11, 147–154. DOI: https://doi.org/10.29244/jtcs.11.02.147 154.

Downloads

Published

2025-10-22

How to Cite

Rumaisha, A., Susanto, S., & Tirtawinata, M. R. (2025). Growth Dynamics of Young Avocado (Persea americana Mill) Plants under Drought Stress in Potted Condition. Journal of Tropical Crop Science, 12(03), 506–515. https://doi.org/10.29244/jtcs.12.03.506-515