Morphological Responses and Productivity of Indigofera (Indigofera zollingeriana) with Varied Fertilization in Limestone Post-mining Land

Authors

DOI:

https://doi.org/10.29244/jtcs.12.03.525-535

Keywords:

fertilization, forage, Indigofera zollingeriana, limestone post-mining land, productivity

Abstract

Indigofera is a protein-rich plant source for ruminants, with potential for introduction to marginal lands, such as limestone post-mining areas, through integration with reclamation activities. This study aims to determine the response of varying levels of organic fertilizer and NPK on the morphology and productivity of Indigofera zollingeriana introduced to limestone post-mining. The study employed a randomized block design with a 3 × 4 factorial pattern and four replications. The first factor was organic fertilizer at the rates of 0, 5, and 10 tons.ha-1, and the second factor was NPK, 0, 50, 100, and 150 kg.ha-1. Indigofera was planted in a 3 x 4 m2 plot with a 1 m planting distance and harvested four times. The results showed that the combination of organic fertilizer with NPK affected (p<0.05) the morphology, biomass production, and nutrient profile. The combination of 10 tons.ha-1 of organic fertilizer and 100 kg.ha-1 NPK optimally produced plant with up to 217.64 cm height, 18.28 tons.ha-1 fresh production per harvest, 4.96 tons.ha-1 dry matter per harvest, 28.78% crude protein, and 72.47% total digestible nutrient. Biomass production decreased in the dry season (third harvest). Conclusively, the combination of 10 tons.ha-1 organic fertilizer and 100 kg.ha-1 NPK produced Indigofera plants with optimum plant height, biomass production, crude protein, and total digestible nutrients. Indigofera plants can be utilized as revegetation plants and as a source of green fodder on limestone post-mining land.

Author Biographies

Harwanto Harwanto, Graduate School of Animal Nutrition and Feed Technology, IPB University, Bogor, Indonesia

Faculty of Animal Science, Universitas Jenderal Soedirman, Purwokerto 53122, Central Java, Indonesia

Suwardi Suwardi, Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, Bogor 16680, West Java, Indonesia

Center for Mine Reclamation Studies, International Research Institute for Environment and Climate Change, IPB University, Bogor 16143, West Java, Indonesia

References

Abdullah, L. (2014). Prospektif agronomi dan ekofisiologi Indigofera zollingeriana sebagai tanaman penghasil hijauan pakan berkualitas tinggi. Pastura 3, 79-83.

Abdullah, L., and Suharlina. (2010). Herbage yield and quality of two vegetative parts of Indigofera at different time of first regrowth defoliation. Media Peternakan 33, 44-49. DOI: https://doi.org/10.5398/medpet.2010.33.3.169.

Ali, A., Abdullah, L., Karti, P.D.M.H., Chozin, M.A., and Astuti, D.A. (2014). Production and nutritive value of Indigofera zollingeriana and Leucaena leucocephala in Peatland. Animal Production 16, 156-164. DOI: https://doi.org/10.20884/1.jap.2014.16.3.461.

Bandyopadhyay, S., and Maiti, S.K. (2019). Evaluation of ecological restoration success in mining-degraded lands. Environmental Quality Management 29, 89-100. DOI: https://doi.org/10.1002/tqem.21641.

[BPS] Badan Pusat Statistik. (2024). “Indikator Pertanian Agricultural Indicator 2023”. Jakarta. Indonesia.

Carvalho, M.L., Maciel, V.F., Bordonal, R.O., Carvalho, J.L.N., Ferreira, T.O., Cerri, C.E.P., and Cherubin, M.R. (2023). Stabilization of organic matter in soils: drivers, mechanisms, and analytical tools – a literature review. Revista Brasileira de Ciencia do Solo 47, e0220130. DOI: https://doi.org/10.36783/18069657rbcs20220130.

Despal, Andini, L.J., Nugraha, E., and Zahera, R. (2021). Regional variation accuracy detection of natural grass multi-species as dairy cattle forage using FT-NIRS. International Journal of Dairy Science 16, 153-160. DOI: https://doi.org/10.3923/ijds.2021.153.160.

Eviati, Sulaeman, Herawaty, L., Anggria, L., Usman, Tantika, H.E., Prihatini, R., Wuningrum, P., Sipahutar, I.A., and Wibowo, H., et al. (2023). “Analisis Kimia Tanah, Tanaman, Air, dan Pupuk.” 3rd ed. Kementerian Pertanian, Bogor.

Ezquer, I., Salameh, I., Colombo, L., Kalaitzis, P. (2020). Plant Cell walls tackling climate change: biotechnological strategies to improve crop adaptations and photosynthesis in response to global warming. Plants 9, 212. DOI: https://doi.org/10.3390/plants9020212.

Habermann, E., Dias de Oliveira, E.A., Delvecchio, G., Belisário, R., Barreto, R.F., Viciedo, D.O., Rossingnoli, N.O., de Pinho-Costa, K.A., de Mello Prado, R., Gonzalez-Meler, M., and Martinez, C.A. (2021). How does leaf physiological acclimation impact forage production and quality of a warmed managed pasture of Stylosanthes capitata under different conditions of soil water availability? Science Total Environmental 759, 143505. DOI: https://doi.org/10.1016/j.scitotenv.2020.143505.

Hartadi, H., Resohadiprodjo, S., and Tillman, A.D. (2005). Tabel Komposisi Pakan untuk Indonesia. Cetakan kelima. Gadjah Mada Press Yogyakarta.

Harwanto, Karti, P.D.M.H., Suwardi, and Abdullah, L. (2023). Native plant composition and soil microfauna in limestone post-mining land as potential for development of ruminant forage. Biodiversitas 24, 6332-6342. DOI: https://doi.org/10.13057/biodiv/d241158.

Harwanto, Karti, P.D.M.H., Suwardi, and Abdullah, L. (2025). Plant growth, biomass production, and nutrient profile of Centrocema pubescens under different fertilization doses in post-lime mining reclamation land. IOP Conf. Series: Earth and Environmental Science 1502, 012012. DOI: https://doi.org/10.1088/17551315/1502/1/012012.

Herdiawan, I., and Sutedi, E. (2015). Productivity of Calliandra calothyrsus, Indigofera zollingeriana and Gliricidia sepium on acid soil in the greenhouse. Jurnal Ilmu Ternak dan Veteriner 20, 105-114. DOI: https://doi.org/10.14334/jitv.v20i2.1165.

Hilty, J., Muller, B., Pantin, F., and Leuzinger, S. (2021). Plant growth: the what, the how, and the why. New Phytologist 232, 25–41 DOI: https://doi.org/10.1111/nph.17610.

Houston, K., Tucker, M.R., Chowdhury, J., Shirley, N., and Little, A. (2016). The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Frontier in Plant Science 7, 984. DOI: https://doi.org/10.3389/fpls.2016.00984.

Howe, J.A., McDonald, M.D., Burke, J., Robertson, I., Coker, H., Gentry, T.J., and Lewis, K.L. (2024). Influence of fertilizer and manure inputs on soil health: A review. Soil Security 16, 100155. DOI: https://doi.org/10.1016/j.soisec.2024.100155.

Hutapea, P.S., Abdullah, L., Karti, P.D.M.H., and Anas, I. (2018). Improvement of Indigofera zollingeriana Production and methionine content through inoculation of nitrogen-fixing bacteria. Tropical Animal Science Journal 41, 37-45. DOI: https://doi.org/10.5398/tasj.2018.41.1.37.

Infitria., Karti, P.D.M.H., and Suharti, S. (2024). Pertumbuhan dan produksi Indigofera zollingeriana pada lahan pasca tambang pasir dengan penambahan pupuk dan mikoriza. Jurnal Agripet 24, 26-43. DOI: https://doi.org/10.17969/agripet.v24i1.25418.

Jayanegara, A., Ridla, M., Nahrowi., and Laconi, E.B. (2019). Estimation and validation of total digestible nutrient values of forage and concentrate feedstuffs. IOP Conf. Series: Materials Science and Engineering 042016. DOI: https://doi.org/10.1088/1757899X/546/4/042016.

Joona, J., Liski, E., and Kahiluoto, H. (2024). Manure increases soil organic carbon most when allocated to annual cropping. Catena 234, 107844. DOI: https://doi.org/10.1016/j.catena.2024.107844.

Karti, P.D.M.H., and Setiadi, Y. (2011). Respon pertumbuhan, produksi dan kualitas rumput terhadap penambahan fungi mikoriza arbuskula dan asam humat pada tanah masam dengan aluminium tinggi. Jurnal Ilmu Ternak dan Veteriner 16, 104-111.

Karti, P.D.M.H., Astuti, D.A., and Nofyantri. (2012). The role of arbuscular mycorrhizal fungi in enhancing productivity, nutritional quality, and drought tolerance mechanism of Stylosanthes seabrana. Media Peternakan 35, 67-72. DOI: https://doi.org/10.5398/medpet.2012.35.1.67.

Komolafe, O.O., Adewole, M.B., and Matthew O.J. (2022). Assessment of different biochar and composted cow dung on soil properties, growth and cob weight of maize. Journal of Tropical Crop Science 9, 124-136. DOI: https://doi.org/10.29244/jtcs.9.02.124-136.

Kumalasari, N.R., Wicaksono, G.P., and Abdullah, L. (2017). Plant growth pattern, forage yield, and Quality of Indigofera zollingeriana influenced by row spacing. Media Peternakan 40, 14-19. DOI: https://doi.org/10.5398/medpet.2017.40.1.14.

Lan, L.T.T., Ngu, N.T., Hung, L.T., Han, L.V.N., and Nhan, N.T.H. (2019). Moringaringa oleifera and Calliandra calothyrsus leaf powder as feed supplement in the diet of laying Japanese quails. Livestock Research Forrural Development 31, 2019. https://www.lrrd.org/lrrd31/7/nhan31114.html.

Li, A., and Liu, Z. (2024). Fertilisation and environmental factors affect the yield and quality of alfalfa in China. Plant, Soil and Environment 70, 276–286. DOI: https://doi.org/10.17221/457/2023-PSE.

Maccari, M., Assmann, T.S., Bernardon, A., Soares, A.B., Franzluebbers, A., Borlolli, M,, Bortolli, B.B., and Glienke, C.L. (2021). Relationships between N, P, and K in corn biomass for assessing the carryover effects of winter pasture to corn. European Journal of Agronomy 129, 126317. DOI: https://doi.org/10.1016/j.eja.2021.126317

Msimbira, L.A., and Smith, D.L. (2020). The roles of plant growth-promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Frontiers Sustainable Food Systems 4, 106. DOI: https://doi.org/10.3389/fsufs.2020.00106.

Ortega, R., Domene, M.A., Soriano, M., Sánchez Marañón, M., Asensioa, C., and Miralles, I. (2020) Improving the fertility of degraded soils from a limestone quarry with organic and inorganic amendments to support vegetation restoration with semiarid Mediterranean plants. Soil and Tillage Research 204, 104718. DOI: https://doi.org/10.1016/j.still.2020.104718.

Pratiwi, Narendra, B.H., Siregar, C.A., Turjaman, M., Hidayat, A., Rachmat, H.H., Mulyanto, B., Suwardi, Iskandar, and Maharani, R., et al. (2021). Managing and reforesting degraded post-mining landscape in Indonesia: A Review. Land 10, 1-30. DOI: https://doi.org/10.3390/land10060658.

Royania, J.I., Abdullah, L., Sudarsono., Aisyah, S.I., Hardianto, D., Negoro, P.S., Purba R.D., and Azahrae, B.S. (2025). Shade selection of Indigofera zollingeriana miq putative mutant: evaluation of plant growth, biomass production, nutrient contents, and in vitro digestibility. Tropical Animal Science Journal 48, 120-131. DOI: https://doi.org/10.5398/tasj.2025.48.2.120.

Suharlina, Astuti, D.A., Nahrowi, Jayanegara, A., and Abdullah, L. (2016). Nutritional evaluation of dairy goat rations containing Indigofera zollingeriana by using in vitro rumen fermentation technique (RUSITEC). International Journal of Dairy Science 11, 100-105. DOI: https://doi.org/10.3923/ijds.2016.100.105.

Suwardi. (2019). Utilization and improvement of marginal soils for agricultural development in Indonesia. IOP Conf Series: Earth and Environmental Science DOI: 383, 012047. https://doi.org/10.1088/1755-1315/383/1/012047.

Downloads

Published

2025-10-22

How to Cite

Harwanto, H., Karti, P. D. M. H., Suwardi, S., & Abdullah, L. (2025). Morphological Responses and Productivity of Indigofera (Indigofera zollingeriana) with Varied Fertilization in Limestone Post-mining Land . Journal of Tropical Crop Science, 12(03), 525–535. https://doi.org/10.29244/jtcs.12.03.525-535