Boosting Soybean Growth: The Role of Soil Moisture Conservation Technique and Vesicular Arbuscular Mycorrhizae in Limpopo Province, South Africa
DOI:
https://doi.org/10.29244/jtcs.12.03.483-491Keywords:
biofertilizer, closed ridges, flat, grain yield, growth parameters, soybeanAbstract
Low soil fertility and moisture stress are the primary factors affecting soybean productivity. The study aimed to evaluate the effect of vesicular arbuscular mycorrhizae (VAM) and soil moisture conservation techniques on the performance of a promiscuous soybean variety during the 2018/2019 and 2019/2020 growing seasons. Two levels of soil moisture conservation techniques (flat and closed ridges) and two levels of VAM (0 and 100 kg.ha-1) were arranged in a split-plot design within a completely randomized block design with four replications. The data collected include growth, physiological, grain yield, and yield attributes of the promiscuous soybean variety. Sole application of soil moisture conservation techniques (SMCT) and VAM showed no significant influence (p>0.05) on the number of leaves, plant height, andnumber of branches of the promiscuous soybean variety. Soil moisture conservation techniques showed significant differences (p<0.05) in pod length. The interaction effect between soil moisture conservation techniques and the application of VAM had a significant impact on plant vigor (0.75), while non-significant variations were observed in the number of branches (5.31), plant height, and the number of leaves (20.81). The interaction effect of soil moisture conservation techniques and VAM was significant (p<0.05) on shelling percentage, while a non-significant difference was observed in grain yield (1382.7 kg.ha-1). Flat planting and nonVAM application had a higher shelling percentage (40.53%). The study demonstrated that flat planting, in combination with VAM, improved plant vigor under moisture-limited conditions. Flat planting can be recommended for soybean production at Syferkuil farm in Limpopo province.
References
Abderemane, B.A., Fakiri, M., Idrissi, O., Baidani, A., Zeroual, A., Mazzucotelli, E., Ozkan, H., Marcotuli, I., Gadaleta, A., and Houasli, C. (2023). Evaluation of the productive potential of a world collection of chickpeas (Cicer arietinum L.) for the initiation of breeding programs for adaptation to conservation agriculture. Sustainability 15, 11927. DOI: https://doi.org/10.3390/su151511927.
Adeyemi, N.O., Atayese, M.O., Olubode, A.A., and Akan, M.E. (2020). Effect of commercial arbuscular mycorrhizal fungi inoculant on growth and yield of soybean under controlled and natural field conditions. Journal of Plant Nutrition 43, 487-499. DOI: https://doi.org/10.1080/01904167.2019.1685101.
Aguirre, J. (2023). The Kjeldahl method In “The Kjeldahl Method” pp. 140. Springer. DOI: https://doi.org/10.1007/978-3-031-31458-2.
Aswitha, K., and Malarvizhi, P. (2022). Interaction Effect of vesicular arbuscular mycorrhiza with different amendments on increasing phosphorus uptake. Madras Agriculture Journal 110, 1-11. DOI: https://doi.org/10.29321/MAJ.10.000720.
Bahadur, A., Batool, A., Nasir, F., Jiang, S., Mingsen, Q., Zhang, Q., Pan, J., Liu, Y., and Feng, H. (2019). Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. International Journal of Molecular Sciences 20, 4199. DOI: https://doi.org/10.3390/ijms20174199.
Begna, T. (2020). Effects of drought stress on crop production and productivity. International Journal of Research Studies in Agricultural Sciences (IJRSAS) 6, 2454–6224. DOI: https://doi.org/10.20431/2454-6224.0609005.
Berruti, A., Lumini, F., Balestrini, R., and Bianciotto, V. (2016). Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Frontier Microbiology 6, 1559. DOI: https://doi.org/10.3389/fmicb.2015.01559.
Chauhan, P., Sharma, N., Tapwal, A., Kumar, A., Verma, G.S., Meena, M., Seth, C.S., and Swapnil, P. (2023). Soil microbiome: diversity, benefits, and interactions with plants. Sustainability 15, 14643. DOI: https://doi.org/10.3390/su151914643.
Danquah, E.O., Danquah, F.O., Frimpong, F., Dankwa, K.O., Weebadde, C.K., Ennin, S.A., Asante, M.O.O., Bermpong, M.B., Dwamena, H.A., Addo-Danso A., Nyamekye, D.R., Akom, M., and Opoku, A.Y. (2022). Sustainable intensification and climate-smart yam production for improved food security in West Africa: a review. Frontier Agronomy 4, 858114. DOI: https://doi.org/10.3389/fagro.2022.858114.
de Souza Buzo, F., Garé, L.M., Garcia, N.F.S., de Andrade Silva, M.S.R., Martins, J.T., da Silva, P.H.G., Meireles, F.C., de Souza Sales, L.Z., Nogales, A., Rigobelo, EC., and Arf, O. (2023). Effect of mycorrhizae on phosphate fertilization efficiency and maize growth under f ield conditions. Scientific Report 13, 1-12. DOI: https://doi.org/10.1038/s41598-023-30128-7.
Diwakar, A.K., Yadav, J., Patel, K., Prajapati, S.K. Vandana, V.J., and Soni, R.L. (2023). Study of physico-chemical and nutrient status of the soil in Chiraigaon Block, Varanasi District, Uttar Pradesh, India. International Journal of Plant and Soil Science 35, 77 84. DOI: https://doi.org/10.9734/ijpss/2023/v35i62841.
Dzvene, A.R., Zhou, L., Slayi, M., and Dirwal, T.L. (2025). A scoping review on challenges and measures for climate change in arid and semi-arid agri-food systems. Discover Sustainability 6, 15. DOI: https://doi.org/10.1007/s43621-025-00945-z.
Esan, V.I., Oluwasikemi Oke, G.O., and Ogunbode, T.O. (2023). Genetic variation and characterization of Bambara groundnut [Vigna subterranean (L.) verdc.] accessions under multi environments considering yield and yield components performance. Scientific Report 13, 1-19. DOI: https://doi.org/10.1038/s41598 023-28794-8.
Gomez, K.A., and Gomez, A.A. (1984). “Statistical Procedures for Agricultural Research”. International Rice Research Institute. John Wiley and Sons.
Hindumathi, A., and Reddy, B.N. (2011). Occurrence and distribution of arbuscular mycorrhizal fungi and microbial flora in the rhizosphere soils of mungbean [Vigna radiata (L.) wilczek] and soybean [Glycine max (L.) Merr.] from Adilabad, Nizamabad, and Karimnagar districts of Andhra Pradesh state, India. Advances in Bioscience and Biotechnology 2, 275-286. DOI: https://doi.org/10.4236/abb.2011.24040.
Igiehon, N.O., Babalolaa, O.O., Chesetob, X., and Torto, B. (2021). Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress. Microbiological Research 242, 1-16. DOI: https://doi.org/10.1016/j.micres.2020.126640.
Israilov, I., Sheraliev, K., Abdalova, G., Iminov, A., Allanov, K., Karimov, A., Khaitov, B., and Kim, Y.C. (2023). Interactive effects of N fertilization and Bradirhizobia japanicum on agronomical traits of soybean in salt affected soils. Turkish Journal in Field Crop 28, 15-25. DOI: https://doi.org/10.17557/tjfc.1189103.
Jadhav, R.S., Munde, G.R., Sargar, P.R., Choudhari, K.G., and Shinde, J.L. (2022). Correlation analysis for fruit yield and its related traits in genotypes of okra [Abelmoschus esculentus (L.) Moench]. The Pharma Innovation Journal 11, 284-287.
Kasu-Bandi, B.T., Kidinda, L.K., Kasendue, G.B., Longanza, L.B., Emery, K.L., and Lubobo, A.K. (2019). Correlations between growth and yield parameters of soybean (Glycine max (L.) Merr.) under the influence of Bradyrhizobium japonicum in Kipushi (The Democratic Republic of Congo). American Journal of Agricultural and Biological Sciences 14, 1-10. DOI: https://doi.org/10.3844/ajabssp.2019.86.94.
Kumar, S.D., Sindhu, S.S., and Kumar, R. (2022). Biofertilizers: An eco-friendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Science 3, 1-26. DOI: https://doi.org/10.1016/j.crmicr.2021.100094.
Malik, M.F.A., Ashraf, M., Qureshi, A.S., and Khan, M.R. (2011). Investigation and comparison of some morphological traits of the soybean populations using cluster analysis. Pakistan Journal of Botany 43, 1249-1255.
Matcham, E.G., Ruark, M.D., Stoltenberg, D.E., and Conley, S.P. (2023). Comparison of Bray-1 and Mehlich-3 extraction of P and K in Wisconsin silt loam soils. Soil Science Society of America Journal 87, 999-1002. DOI: https://doi.org/10.1002/saj2.20557.
Mukhongo, R.W., Ebanyat, P., Masso, C., and Tumuhairwe, J.B. (2023) Composition and spore abundance of arbuscular mycorrhizal fungi in sweet potato producing areas in Uganda. Frontiers in Soil Sciences 3, 1152524. DOI: https://doi.org/10.3389/fsoil.2023.1152524.
Mustapha, A.A., Abdu, N., Oyinlola, E.Y., and Nuhu, A.A. (2023). Evaluating different methods of organic carbon estimation on Nigerian savannah soils. Journal of Soil Science and Plant Nutrition 23, 790–800. DOI: https://doi.org/10.1007/s42729-022-01082-6.
Peoples, M.B., Giller, K.E., Jensen, E.S., and Herridge, D.F. (2021). Quantifying country-to global scale nitrogen fixation for grain legumes: I. Reliance on nitrogen fixation of soybean, groundnut, and pulses. Plant Soil 469, 1–14. DOI: https://doi.org/10.1007/s11104-02105167-6.
Querejeta, J.I., Allen, M.F., Caravaca, F., and Rolda, N. (2006). Differential modulation of host plant d13C and d18O by native and non native arbuscular mycorrhizal fungi in a semiarid environment. New Phytologist 169, 379–387. DOI: https://doi.org/10.1111/j.14698137.2005.01599.x.
Rasouli, F., Amini, T., Skrovankova, S., Asadi, M., Hassanpouraghdam, M.B., Ercisli S., Buckova, M., Mrazkova, M., and Mlcek, J. (2023). Influence of drought stress and mycorrhizal (Funneliformis mosseae) symbiosis on growth parameters, chlorophyll f luorescence, antioxidant activity, and essential oil composition of summer savory (Satureja hortensis L.) plants. Frontiers in Plant Science 14, 1151467. DOI: https://doi.org/10.3389/fpls.2023.1151467.
Rathwa, M.K., Patel, G.J., Patel, K.C., Ninama, S.D., and Shiyal, V.N. (2023). Varietal response of soybean (Glycine max L. Merrill) on growth, yield attributes and yield to different intra row spacing under ridge and furrow system. Pharma Innovation 12, 1481-1485.
Schreiner, R.P. (2007). Effects of native and non-native arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Applied Soil Ecology 36, 205–215. DOI: https://doi.org/10.1016/j.apsoil.2007.03.002.
Shah, A., Nazari, M., Antar, M., Msimbira, L.A., Naamala, J., Lyu, D., Rabileh, M., Zajonc, J., and Smith, D.L. (2021). PGPR in agriculture: A sustainable approach to increasing climate change resilience. Frontiers in Sustainable Food Systems 5, 1-23. DOI: https://doi.org/10.3389/fsufs.2021.667546.
Singh, J., Kumari, A., Jain, R., and Pachlaniya, N. (2018). Effect of different land configurations on the yield of soybean (Glycine max L.). International Journal of Agricultural Engineering 11, 135-137. DOI: https://doi.org/10.15740/HAS/IJAE/11.1/135-137.
Tang, H., Hassan, M.U., Feng, L., Nawaz, M., Shah, A.N., Qari, S.H., Liu, Y., and Miao, J. (2022). The critical role of arbuscular mycorrhizal fungi in improving drought tolerance and nitrogen use efficiency in crops. Frontiers In Plant Sciences 13, 919166. DOI: https://doi.org/10.3389/fpls.2022.919166.
Van Huyssteen, C.W. (2020). “Relating the South African Soil Taxonomy to the World Reference Base for Soil Resources”. Sun Bonani Scholar, Bloemfontein, South Africa. DOI: https://doi.org/10.18820/9781928424666.
Wilkes, T.I. (2021). Arbuscular mycorrhizal fungi in agriculture. Encyclopedia 1, 1132–1154. DOI: https://doi.org/10.3390/encyclopedia1040085.
World Reference Base for Soil Resources (2014). “International Soil Classification System for Naming Soils and Creating Legends for Soil Maps.” World Soil Resources Reports No. 106. Rome, Italy. 2015. https://www.fao.org/3/i3794en/I3794en.pdf [June 11, 2025].
Downloads
Published
How to Cite
Issue
Section
License
All publications by Journal of Tropical Crop Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



