Agronomic Performance and Light Interception in a Multi Canopy Rice Cultivation System

Authors

  • Husna Agronomy and Horticulture Study Program, Graduate School, Bogor Agricultural University, Bogor 16680, Indonesia
  • Ahmad Junaedi Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University, Bogor 16680, Indonesia https://orcid.org/0000-0002-4237-5789
  • Heni Purnamawati Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University, Bogor 16680, Indonesia https://orcid.org/0000-0002-5575-8930

DOI:

https://doi.org/10.29244/jtcs.12.01.77-88

Keywords:

high productivity, land use efficiency, rice canopy, vertical space

Abstract

Vertical space optimization through a multi-canopy system can potentially increase rice production. This research aims to evaluate the agronomic performance, light interception, and production of rice plants cultivated with a multi-canopy system. This research was conducted at the Sawah Baru Experimental Farm, IPB University. Rice varieties used two common height plants (“Inpari 30” and “Inpari 32”) and the taller plants (“IPB 9G”). This research consisting of nine treatment combinations of cultivation system: mono-variety (“Inpari 30”, “Inpari 32”, and “IPB 9G”), combination of two varieties in one hill multi-canopy (“Inpari 30”-“IPB 9G” and “Inpari 32”-“IPB 9G”), inter-variety one-insertion multi-canopy (“Inpari 30”-“IPB 9G” and “Inpari 32”-“IPB 9G”), and inter-variety two-insertion multi-canopy (“Inpari 30”-“IPB 9G” and “Inpari 32”-“IPB 9G”). The results showed morphological and physiological performance as good in a multi-canopy system (inter-variety one insertion) on the variables of the plant height, number of panicles per clump, panicle length, number of grains per hill, weight of grains per hill, photosynthetic rate and land equivalent ratio (LER). The percentage of light interception in the multi-canopy system decreased by 19.13-61.54%. The inter-variety one-insertion multi-canopy with the “Inpari 30”-“IPB 9G” combination increases yield potential by 10.18%, and the “Inpari 32”-“IPB 9G” combination increases by 13.81% compared to the mono-variety. The combination of the “Inpari 30”- “IPB 9G” and “Inpari 32”-“IPB 9G” variety in an inter-variety one-insertion multi-canopy system produces an LER value of 1.75 and 1.64; this shows that the inter-variety one insertion multi-canopy system is promising to increase rice production.

References

Bassuony, N.N., and Zsembeli, J. (2020). Inheritance of some flag leaf and yield characteristics by half-diallel analysis in rice crops (Oryza Sativa L.). Cereal Research Communications 49, 503–510. DOI: https://doi.org/10.1007/s42976-020-00115-z.

Burgess, A.J., Retkute, R., Herman, T., and Murchie, E.H. (2017). Exploring relationships between canopy architecture, light distribution, and photosynthesis in contrasting rice genotypes using 3D canopy recon-struction. Frontiers in Plant Science 8, 1–15. DOI: https://doi.org/10.3389/fpls.2017.00734.

Cao, Y.J., Wang, L.C., Gu, W.R., Wang, Y.J., and Zhang, J.H. (2021). Increasing photosynthetic performance and post-silking N uptake by moderately decreasing leaf source of maize under high planting density. Journal of Integrative Agriculture 20, 494–510. DOI: https://doi.org/10.1016/S2095-3119(20)63378-0.

Chen, Y., Wang, P., Zhang, Z., Tao, F., and Wei, X. (2017). Rice yield development and the shrinking yield gaps in China, 1981–2008. Regional Environmental Change 17, 2397–2408. DOI: https://doi.org/10.1007/s10113-017-1168-7.

Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., Zhang, W., Mi, G., Miao, Y., Li, X., Gao, Q., Yang, J., Wang, Z., Ye, Y., Guo, S., Lu, J., Huang, J., Lv, S., Sun, Y., Liu, Y., Peng, X., Ren, J., Li, S., Deng, X., Shi, X., Zhang, Q., Yang, Z., Tang, L., Wei, C., Jia, L., Zhang, J., He, M., Tong, Y., Tang, Q., Zhong, X., Liu, Z., Cao, N., Kou, C., Ying, H., Yin, Y., Jiao, X., Zhang, Q., Fan, M., Jiang, R., Zhang, F., and Dou, Z. (2018). Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366. DOI: https://doi.org/10.1038/nature25785.

Deb, D., and Dutta, S. (2022). The robustness of land equivalent ratio as a measure of yield advantage of multi-crop systems over monocultures. Experimental Results 3, 1-13. DOI: https://doi.org/10.1017/exp.2021.33.

Deng, S., Wu, Y., Yi, W., Gu, Q., and Tang, X. (2023). The integrative effect of reduced tillage and shading enhanced yield and grain quality of fragrant rice. Agronomy 13, 1-14. DOI: https://doi.org/10.3390/agronomy13082010.

Du, X., Li, Q.Z., Dong, T.F., and Jia, K. (2015). Winter wheat biomass estimation using high temporal and spatial resolution satellite data combined with a light-use efficiency model. Geocarto International 30, 258–269. DOI: http://dx.doi.org/10.1080/10106049.2014.937467.

Fadhilah, N., Karno., and Kristanto, B. (2021). Growth and production of upland rice response to drought stress and silica fertilization. Journal of Agro Complex 5, 1–13. DOI: https://doi.org/10.14710/joac.5.1.1-13.

Habimana, S., Murthy, K.N.K., Reddy, Y.A.N., Mudalagiriyappa, M., Kumari, R.V., and Hanumanthappa, D.C. (2019). Impact of aerobic rice-leafy vegetables intercropping systems on weed management. Advances in Horticultural Science 33, 365-373. DOI: https://doi.org/10.13128/ahs-24266.

Hidayah, U.F., Suwarno, W.B., and Aswidinnoor, H. (2022). Genotype by environment analysis on multi-canopy cropping system in rice: effects of different types of flag leaves. Agronomy Journal 114, 356-365. DOI: https://doi.org/10.1002/agj2.20959.

Hikosaka, K. (2014). Optimal nitrogen distribution within a leaf canopy under direct and diffuse light. Plant, Cell and Environment 37, 2077- 2085. DOI: https://doi.org/10.1111/pce.12291.

Hou, W., Shen, J., Xu, W., Khan, M.R., Wang, Y., Zhou, X., Gao, Q., Murtaza, B., and Zhang, Z. (2021). Recommended nitrogen rates and the verification of effects based on leaf SPAD readings of rice. PeerJ 9, 12107. DOI: https://doi.org/10.7717/peerj.12107.

Khamid, MBR., Junaedi, A., Aswidinnoor, H., Purnamawati, H., and Prasetyo, LB. (2023a). Morpho-physiological characterization of multi-canopy rice cultivation systems in various genotype combinations. IOP Conf. Series: Earth and Environmental Science 1208, 012037. DOI: https://doi.org/10.1088/1755-1315/1208/1/012037.

Khamid, M.B.R., Junaedi, A., Purnamawati, H., Aswidinnoor, H., and Prasetyo, L.B. (2023b). Genotypes assessment for developing varieties on multi-canopy rice cultivation system. Biodiversitas 24, 1175-1185. DOI: https://doi.org/10.13057/biodiv/d240258.

Kondo, R., Tanaka, Y., and Shiraiwa, T. (2022). Predicting rice (Oryza sativa L.) canopy temperature difference and estimating its environmental response in two rice vultivars, “Koshihikari” and “Takanari”, based on neural network. Plant Production Science 25, 394- 406. DOI: https://doi.org/10.1080/1343943X.2022.2103003.

Kumar, M.S., Thavaprakaashn, N., Paneerselvam, S., Jagadeeswaran, R., and Sritharan, N. (2019). Effect of high-density planting on light interception, growth, and yield of Rice (Oryza sativa L.) under modified system of Rice intensification. International Journal of Agriculture Sciences 11, 8640-8642.

Liu, H., Lei, X., Liang, H., and Wang, X. (2023). Multi-model rice canopy chlorophyll content inversion based on UAV hyperspectral images. Sustainability 15, 1-22. DOI: https://doi.org/10.3390/su15097038.

Liu, X., Ma, Q., and Wu, X. (2022). A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds. Remote Sensing of Environment. 282, 113280. DOI: https://doi.org/10.1016/j.rse.2022.113280.

Lu, C., Hu, N., Yao, K., Xia, S., and Qi, Q. (2010). Plant type and its effects on canopy structure at heading stage in various ecological areas for a two-line hybrid rice combination, Liangyoupeijiu. Rice Science 17, 235–242. DOI: https://doi.org/10.1016/S1672-6308(09)60022-6.

Lu, H., Qi, X., Guo, X., Towa, J.J., Zhen, B., Qiao, D., Wang, Z., Yang, B., and Han, Y. (2018). Canopy light utilization and yield of rice under rain-catching and controlled irrigation. Water (Switzerland) 10, 1-15. DOI: https://doi.org/10.3390/w10101340.

Ma, B., Zhang, L., and He, Z. (2023). Understanding the regulation of cereal grain filling: The way forward. Journal of Integrative Plant Biology 65, 526-547. DOI: http://dx.doi.org/10.1111/jipb.13456.

Makino, Y., Hirooka, Y., Homma, K., Kondo, R., Liu, T.S., Tang, L., Nakazaki, T., Xu, Z.J., and Shiraiwa, T. (2021). Effect of flag leaf length of erect panicle rice on the canopy structure and biomass production after heading. Plant Production Science 25, 1-10. DOI: https://doi.org/10.1080/1343943X.2021.1908152.

Merah, O., Evon, P., and Monneveux, P. (2017). Participation of greenorgans to grain filling in Triticum turgidum var durum grown under Mediterranean conditions. International Journal Molecular Sciences 19, 56. DOI: http://dx.doi.org/10.3390/ijms19010056.

Moroyoqui-Parra, M.A., Molero, G., Reynolds, M.P., Gaju, O., Murchie, E.H., and Foulkes, M.J. (2023). Interaction of planting system with radiation-use efficiency in wheat line. Crop Science 64, 314-332. DOI: https://doi.org/10.1002/csc2.21115.

Munda, S., Saha, S., Adak, T., Jambhulkar, N., Sanghamitra, P., and Patra, B.C. (2019). Performance of cultivated indica rice (Oryza sativa L.) as affected by weedy rice. Experimental Agriculture 55, 875–884. DOI: https://doi.org/10.1017/S0014479718000455.

Novaković, L., Guo, T., Bacic, A., Sampathkumar, A., and Johnson, K.L. (2018). Hitting the wall-sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants 7, 89. DOI: https://doi.org/10.3390/plants7040089.

Sanchez-Bragado, R., Molero. G., Reynolds, M.P., and Araus, J.L. (2016). Photosynthetic contribution of the ear to grain filling in wheat: a comparison of different methodologies for evaluation. Journal of Experimental Botany 67, 2787–2798. DOI: https://doi.org/10.1093/jxb/erw116.

Sinarmata, M.J., Junaedi, A., Purnamawati, H., and Lubis, I. (2023). The agronomic performance of ratoon and modified ratoon salibu in the multi-canopy rice cultivation system. IOP Conf. Series: Earth and Environmental Science 1208. DOI: https://doi.org/10.1088/1755-1315/1208/1/012039.

Singh, S., Mohanty, D.S., Sahu, M., Bhaskar, N., and Verma, B. (2020). Evaluation of SPAD meter values for estimating rice nitrogen status. International Journal of Chemical Studies 8, 1-5. DOI: https://doi.org/10.22271/chemi.2020.v8.i4a.9947.

Sun, X., Xiong, H., Jiang, C., Zhang, D., Yang, Z., Huang, Y., Zhu, W., Ma, S., Duan, J., Wang, X., Liu, W., Guo, H., Li, G., Qi, J., Liang, C., Zhang, Z., Li, J., Zhang, Han, L., Zhou, Y., Peng, Y., Li, Z. (2022). Nature variation of DROT1 confers drought adaptation in upland rice. Nature Communications 13, 4265. DOI: https://doi.org/10.1038/s41467-022-31844-w.

Widyastuti, L.P.Y., Suwarno, W.B., and Aswidinnoor, H. (2020). Genotype by environment analysis on multi-canopy cropping system towards vertical harvest space in rice. Agronomy Journal 112, 4568–4577. DOI: https://doi.org/10.1002/agj2.20405.

Xu, Y., Hu, D., Hou, X., Shen, J., Liu, J., Cen, X., Fu, J., Li, X., Hu, H., and Xiong, L. (2020). OsTMF attenuates cold tolerance by affecting cell wall properties in rice. New Phytologist 227, 498– 512. DOI: https://doi.org/10.1111/nph.16549.

Yang, X.C., and Hwa, C.M. (2008). Genetic modification of plant architecture and variety improvement in rice. Heredity (Edinb) 101, 396–404. DOI: https://doi.org/10.1038/hdy.2008.90.

Yi, X., Wang, N., and Ren, H. (2022). From canopy complementarity to asymmetric competition: The negative relationship between structural diversity and productivity during succession. Journal of Ecology 110, 457–465. DOI: http://dx.doi.org/10.1111/1365-2745.13813.

Zhang, H., Tao, F., and Zhou, G. (2019). Potential yields, yield gaps, and optimal agronomic management practices for rice production systems in different regions of China. Agricultural Systems 9 171, 100–112. DOI: https://doi.org/10.1016/j.agsy.2019.01.007.

Zhang, Y., Yu, C., Lin, J., Liu, J., Liu, B., Wang, J., Huang, A., Li, H., and Zhao, T. (2017). OsMPH1 regulates plant height and improves grain yield in rice. PLoS ONE 12, 0180825. DOI: https://doi.org/10.1371/journal.pone.0180825.

Zhang, Z., Zhou, X.B., and Chen, Y.H. (2016). Effects of irrigation and precision planting patterns on photosynthetic product of wheat. Agronomy Journal 108, 2322–2328. DOI: https://doi.org/10.2134/agronj2016.01.0051.

Zhao, H., Mo, Z., Lin, Q., Pan, S., Duan, M., Tian, H., Wang, S., and Tang, X. (2020). Relationships between grain yield and agronomic traits of rice in southern China. Chilean Journal of Agricultural Research 80, 72-79. DOI: https://doi.org/10.4067/S0718-58392020000100072.

Zhi-qiang, T., De-mei, W., Shao-kang, M., Yu-shuang, Y., Guang-cai, Z., and Xu-hong, C. (2018). Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat. Journal of Integrative Agriculture 17, 566-578. DOI: https://doi.org/10.1016/S2095-3119(17)61715-5.

Downloads

Published

2025-02-28

How to Cite

Husna, Junaedi, A., & Purnamawati, H. (2025). Agronomic Performance and Light Interception in a Multi Canopy Rice Cultivation System. Journal of Tropical Crop Science, 12(01), 77–88. https://doi.org/10.29244/jtcs.12.01.77-88