An Efficient Somatic Embryogenesis and Plant Regeneration from Immature Embryo of Wild Banana Musa acuminata ssp. malaccensis

Authors

DOI:

https://doi.org/10.29244/jtcs.12.01.172-184

Keywords:

embryogenic induction, medium, proliferation, somatic embryos, plant conversion

Abstract

Wild banana Musa acuminata ssp. malaccensis, an ancestor of cultivated bananas, possesses valuable genetic diversity, including resistance genes to fusarium wilt, and demonstrates high environmental adaptability. These traits are important for pre-breeding programs, whether by conventional breeding, which is a lengthy process, or by taking advantage of somatic cell manipulation techniques such as somatic hybridization, which requires an efficient plant regeneration system like somatic embryogenesis. We have established an efficient and comprehensive protocol for somatic embryogenesis of this wild Musa using immature zygotic embryo explants covering culture induction and proliferation, somatic embryo development, and subsequent plant conversion. Embryogenic culture was induced on a complex-modified MS medium supplemented with 1 mg.L-1 2,4-D auxin or 5 mg.L-1 picloram. The embryogenic cultures proliferated in the form of granular or nodular structures, which was best obtained by reducing the picloram concentration to 1 mg.L-1 and combining it with the same concentration of 2,4-D at a half-strength macro-nutrient of basal medium. Embryo development from embryogenic cultures and regeneration into shoots. Proembryos as granular structures spontaneously matured into early-stage somatic embryos upon withdrawal of the strong auxin inducer. Increasing the sucrose and gelling agent concentrations in the growth medium improved somatic embryo formation from embryogenic cultures. The frequency of shoot formation from developed somatic embryos was increased by incorporating 0.5 mg.L-1 BA and 0.5 mg.L-1 GA3 into the regeneration medium.

References

Ahmad, F., Martawi, N.M., Poerba, Y.S., de Jong, H., Schouten, H., and Kema, G.H.J. (2020). Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession. Theoretical and Applied Genetics 133, 3409–3418. DOI: https://doi.org/10.1007/s00122-020-03677-y.

Ahmad, F., Poerba, Y.S., Kema, G.H.J., and de Jong, H. (2021). Male meiosis and pollen morphology in diploid Indonesian wild bananas and cultivars. The Nucleus 64,181–191. DOI: https://doi.org/10.1007/s13237-021-00350-7.

Asghar, S., Ghori, N., Hyat, F., Li, Y., and Chen, C. (2023). Use of auxin and cytokinin for somatic embryogenesis in plant: a story from competence towards completion. Plant Growth Regulation 99, 413-428. DOI: https://doi.org/10.1007/s10725-022-00923-9.

D’Hont, A., Denoeud, F., Aury, J-M., Baurens, F-C., Carreel, F., and Garsmeur, O. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217. DOI: https://doi.org/10.1038/nature11241.

Dale, J., James, A., Paul, J.Y., Khanna, H., Smith, M., Peraza-Echeverria, S., Garcia-Bastidas, F., Kema, G., Waterhouse, P., Mengersen, K., and Harding, R. (2017). Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nature Communications 8, 1–8. DOI: https://doi.org/10.1038/s41467-017-01670-6.

Escalant, J.V., and Teisson, C. (1989). Somatic embryogenesis and plants from immature zygotic embryos of the species Musa acuminata and Musa balbisiana. Plant Cell Reports 7, 665–668. DOI: https://doi.org/10.1007/BF00272056.

Escobedo-GraciaMedrano, R.M., Maldonado-Borges, J.I., Burgos-Tan, M.J., Valadez-González, N., and Ku-Cauich, J.R. (2014). Using flow cytometry and cytological analyses to assess the genetic stability of somatic embryo-derived plantlets from embryogenic Musa acuminata Colla (AA) ssp. malaccensis cell suspension cultures. Plant Cell, Tissue and Organ Culture 116, 175–185. DOI: https://doi.org/10.1007/s11240-013-0394-z.

Escobedo-GraciaMedrano, R.M., Enríquez-Valencia, A.J., Youssef, M., López-Gómez, P., Cruz- Cárdenas, C.I., and Ku-Cauich, J.R. (2016). Somatic Embryogenesis in Banana, Musa ssp In “Somatic Embryogenesis: Fundamental Aspects and Applications” (V. Loyola-Vargas, N. Ochoa-Alejo, eds.), pp 381-400. Springer, Cham.

Grapin, A., Ortíz, J.L., Lescot, T., Ferrière, N., and Côte, F.X. (2000). Recovery and regeneration of embryogenic cultures from female flowers of False Horn Plantain. Plant Cell, Tissue and Organ Culture 61, 237–244. DOI: https://doi.org/10.1023/A:1006423304033.

Grosser, J.W., and Gmitter, F.G. (2011). Protoplast fusion for production of tetraploids and triploids: Applications for scion and rootstock breeding in citrus. Plant Cell, Tissue and Organ Culture 104, 343–357. DOI: https://doi.org/10.1007/s11240-010-9823-4.

Handayani, T., and Witjaksono. (2023). In vitro somatic embryogenesis from thin cell layers (TCLs) explants of shallot (Allium cepa L.). AIP Conference Proceedings, 2606, 040007. DOI: https://doi.org/10.1063/5.0118389.

Hazubska-Przybył, T., Ratajczak, E., Obarska, A., and Pers-Kamczyc, E. (2020). Different roles of auxins in somatic embryogenesis efficiency in two Picea species. International Journal of Molecular Sciences 21, 3394. DOI: https://doi.org/10.3390/ijms21093394.

Husni, N., Jalil, M., Othman, R.Y., and Khalid, N. (2014). Enhancement of regeneration efficiency in banana (Musa acuminata cv. Berangan) by using proline and glutamine. Scientia Horticulturae 168, 33–37. DOI: https://doi.org/10.1016/j.scienta.2014.01.013.

Jeensae, R., Kongsiri, N., Fluch, S., Burg, K., and Boonruangrod, R. (2021). Cultivar specific gene pool may play an important role in Musa acuminata Colla evolution. Genetic Resources and Crop Evolution 68, 1589-1601. DOI: https://doi.org/10.1007/s10722-020-01088-y.

Khalil, S.M., Cheah, K.T., Perez, E.A., Gaskill, D.A., and Hu, J.S. (2002). Regeneration of banana (Musa spp. AAB cv. Dwarf Brazilian) via secondary somatic embryogenesis. Plant Cell Reports 20, 1128–1134. DOI: https://doi.org/10.1007/s00299-002-0461-0.

Kim, M.J., Yun, S.H., Park, S.M., Jin, S.B., and Song K.J. (2020). Characterization of allotetraploids derived from protoplast fusion between navel orange and kumquat. In Vitro Cellular & Developmental Biology-Plant 56, 634–643. DOI: https://doi.org/10.1007/s11627-020-10071-2.

Kumaravel, M., Backiyarani, S., Saraswathi, M.S., Arun, K., and Uma, S. (2020). Induction of somatic embryogenesis (SE) in recalcitrant Musa Spp. by media manipulation based on SE’s molecular mechanism. Acta Horticulturae 1272, 119–25. DOI: https://doi.org/10.17660/ActaHortic.2020.1272.15.

Méndez-Hernández, H.A., Ledezma-Rodríguez, M., Avilez-Montalvo, R.N., Juárez-Gómez, Y.L., Skeete, A., Avilez-Montalvo, J., De-la-Peña, C., and Loyola-Vargas, V.M. (2019) Signaling overview of plant somatic embryogenesis. Frontiers in Plant Science 10, 77. DOI: https://doi.org/10.3389/fpls.2019.00077.

Morais-Lino, L.S., Santos-Serejo, J.A., Amorim, E.P., Ferreira de Santana, J.R., Pasqual, M., and de Oliveira e Silva, S. (2016). Somatic embryogenesis, cell suspension, and genetic stability of banana cultivars. In Vitro Cellular & Developmental Biology-Plant 52, 99–106. DOI: https://doi.org/10.1007/s11627-015-9729-2.

Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum 15, 474–497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

Muzika, N.S., Kamai, T., Williams, L.E., and Kleiman, M. (2024). Characterization of gelling agents in callus inducing media: Physical properties and their effect on callus growth. Physiologia Plantarum 176, e14312. DOI: https://doi.org/10.1101/2024.02.14.580317.

Natarajan, N., Sundararajan, S., Ramalingam, S., and Chellakan, P.S. (2020). Efficient and rapid in-vitro plantlet regeneration via somatic embryogenesis in ornamental bananas (Musa spp.). Biologia 75, 317–326. DOI: https://doi.org/10.2478/s11756-019-00358-0.

Paiva, P.D.D.O., Silva, D.P.C.D., Silva, B.R.D., Sousa, I.P.D., Paiva, R., and Reis, M.V.D. (2023). How scarification, GA3 and graphene oxide influence the in vitro establishment and development of Strelitzia. Plants 12, 2142. DOI: https://doi.org/10.3390/plants12112142.

Palanyandy, S.R., Gantait, S., and Sinniah, U.R. (2020). Effects of some gelling agents and their concentrations on the conversion of oil palm polyembryoids into plantlets. Journal of Genetic Engineering and Biotechnology 18, 1-5. DOI: https://doi.org/10.1186/s43141-019-0018-z.

Perrier, X., Bakry, F., Jenny, C., Horry, J., Lebot, V., and Hippolyte, I. (2009). Combining biological approaches to shed light on the evolution of edible bananas. Ethnobotany Research & Applications 7, 199–216. DOI: https://doi.org/10.17348/era.7.0.199-216.

Polivanova, O.B., and Bedarev, V.A. (2022). Hyperhydricity in plant tissue culture. Plants 11, 3313. DOI: https://doi.org/10.3390/plants11233313.

Ponni, T.G., and Nair, A.S. (2019). Somatic embryogenesis is used to overcome low seed viability and conserve wild bananas (Ensete superbum (Roxb.) Cheesman). In Vitro Cellular and Developmental Biology-Plant 55, 371– 379. DOI: https://doi.org/10.1007/s11627-019-09998-y.

Rahayuniati, R.F., and Subandiyah, S. (2022). Symptom expression and resistance of some banana cultivars to banana bunchy top virus infection. Agriculture and Natural Resources 56, 1019–1028. DOI: https://doi.org/10.34044/j.anres.2022.56.5.16.

Raomai, S., Kumaria, S., and Tandon, P. (2014). Plant regeneration through direct somatic embryogenesis from immature zygotic embryos of the medicinal plant, Paris polyphylla Sm. Plant Cell, Tissue and Organ Culture 118, 445–455. DOI: https://doi.org/10.1007/s11240-014-0496-2.

Roostika, I., Damayanti, F., and Witjaksono (2022) Successful preservation of banana embryogenic callus by minimal growth and cryopreservation technique. Jurnal Teknologi (Sciences & Engineering) 84, 167–176. DOI: https://doi.org/10.11113/jurnalteknologi.v84.18300.

Rustagi, A., Shekhar, S., Kumar, D., Lawrence, K., Bhat, V., and Sarin, N.B. (2019). High speed regeneration via somatic embryogenesis in elite Indian banana cv. Somrani monthan (ABB). Vegetos 32, 39–47. DOI: https://doi.org/10.1007/s42535-019-00005-8.

Sarma, M.K., Sharma, A.A., Samantara, K., and Wani, S.H. (2023). In vitro techniques in plant breeding. Advanced Crop Improvement 1, 185-215. DOI: https://doi.org/10.1007/978-3-031-28146- 4_8.

Sholi, N.J.Y., Chaurasia, A., Agrawal, A., and Sarin, N.B. (2009). ABA enhances plant regeneration of somatic embryos derived from cell suspension cultures of plantain cv. Spambia (Musa sp.). Plant Cell, Tissue and Organ Culture 99, 133– 140. DOI: https://doi.org/10.1007/s11240-009-9585-z.

Smitha, P.D., Binoy, K.R., Ashalatha, S., and Nair A. (2020). Enhanced secondary somatic embryogenesis in suspension culture of four diploid banana cultivars from Kerala. International Journal of Fruit Science 20, 5617–5626. DOI: https://doi.org/10.1080/15538362.2020.1768615.

Strosse, H., Domergue, R., Panis, B., Escalant, J.V., and Cote, F. (2003). Banana and plantain embryogenic cell suspension In “INIBAP Technical Guidelines 8” (A. Vezina, C. Picq, eds,), pp 1-31. The International Network for the Improvement of Banana and Plantain, Montpellier, France. https://cropgenebank.sgrp.cgiar.org/files/tg8_en.pdf.

Tripathi, M.K., Bele, D., Tiwari, S., Mishra, N., Tripathi, N., Tiwari, G., and Tiwari, S. (2022). Plantlet regeneration from cultured nodal segments in sandalwood (Santalum album Linn.). Research developments in science and technology 2, 1-21. DOI: https://doi.org/10.9734/bpi/rdst/v2/6011F.

Uma, S., Lakshmi, S., Saraswathi, M.S., Akbar, A., and Mustaffa, M.M. (2012). Plant regeneration through somatic embryogenesis from immature and mature zygotic embryos of Musa acuminata ssp. burmannica. In Vitro Cellular & Developmental Biology-Plant 48, 539–545. DOI: https://doi.org/10.1007/s11627-012-9462-z.

Uma, S., Kumaravel, M., Backiyarani, S., Saraswathi, M.S., Durai, P., and Karthic, R. (2021). Somatic embryogenesis as a tool for reproduction of genetically stable plants in banana and confirmatory field trials. Plant Cell, Tissue and Organ Culture 147, 181-188. DOI: https://doi.org/10.1007/s11240-021-02108-0.

Wang, X., Yu, R., and Li, J. (2021). Using genetic engineering techniques to develop banana cultivars with fusarium wilt resistance and ideal plant architecture. Frontiers in Plant Science 11, 617528. DOI: https://doi.org/10.3389/fpls.2020.617528.

Witjaksono, and Litz, R.E. (1999) Maturation of avocado somatic embryos and plant recovery. Plant Cell, Tissue and Organ Culture 58,141–148. DOI: https://doi.org/10.1023/A:1006344127546.

Wójcik, A.M., Wójcikowska, B., and Gaj, M.D. (2020). Current perspectives on the auxin-mediated genetic network that controls the induction of somatic embryogenesis in plants. International Journal of Molecular Sciences 21, 1333. DOI: https://doi.org/10.3390/ijms21041333 .

Xiao, W., Huang, X., Gong, Q., Dai, X-M., Zhao, J-T., Wei, Y-R., and Huang, X-L. (2009). Somatic hybrids obtained by asymmetric protoplast fusion between Musa Silk cv. Guoshanxiang (AAB) and Musa acuminata cv. Mas (AA). Plant Cell, Tissue and Organ Culture 97, 313– 321. DOI: https://doi.org/10.1007/s11240-009- 9530-1.

Downloads

Published

2025-02-28

How to Cite

Handayani, T., Martanti, D., Prawestri, A. D., Maharijaya, A., Wahyu, Y., Sobir, & Witjaksono. (2025). An Efficient Somatic Embryogenesis and Plant Regeneration from Immature Embryo of Wild Banana Musa acuminata ssp. malaccensis. Journal of Tropical Crop Science, 12(01), 172–184. https://doi.org/10.29244/jtcs.12.01.172-184